A Fitting Robot for Variational Analysis

Alan Ó Cais

CSSM

July 18, 2008

Introduction

A Fitting Robot Variational Analysis Conclusions and Further Work All-to-all Propagators - Hybrid Method Lattice Parameters Motivation

Introduction

- All-to-all propagators
- The folly of effective mass plots
- Variational analysis
- Need to minimise work and uncertainty

All-to-all Propagators - Hybrid Method Lattice Parameters Motivation

All-to-all Propagators - Hybrid Method

The quark propagator is broken up into two subspaces: $Q^{-1}=ar{Q}_0+ar{Q}_1$,

- \bar{Q}_0 is given by truncated spectral decomposition.
- \bar{Q}_1 is estimated stochastically.

All-to-all Propagators - Hybrid Method Lattice Parameters Motivation

All-to-all Propagators - Hybrid Method

The quark propagator is broken up into two subspaces: $Q^{-1}=ar{Q}_0+ar{Q}_1,$

- \bar{Q}_0 is given by truncated spectral decomposition.
- \bar{Q}_1 is estimated stochastically.

Construct the *hybrid list*

$$w^{(i)} = \left\{ \frac{v^{(1)}}{\lambda_1}, \cdots, \frac{v^{(N_{ev})}}{\lambda_{N_{ev}}}, \eta^{(1)}, \cdots, \eta^{(N_d)} \right\}$$
$$u^{(i)} = \left\{ v^{(1)}, \cdots, v^{(N_{ev})}, \psi^{(1)}, \cdots, \psi^{(N_d)} \right\}$$

The hybrid formula for the all-to-all quark propagator (where $Q = \gamma_5 M$) is given by

$$M^{-1} = \sum_{i=1}^{N_{HL}} u^{(i)}(\vec{x}, x_4) \otimes w^{(i)}(\vec{y}, y_4)^{\dagger} \gamma_5$$

Introduction

A Fitting Robot Variational Analysis Conclusions and Further Work All-to-all Propagators - Hybrid Method Lattice Parameters Motivation

Lattice Parameters

- $N_f = 2$ dynamical background
- $12^3 \times 80$ anisotropic lattice with $\xi = 6$ and $a_s = 0.2 fm$.
- 96 gauge configurations
- Operators quark bilinears, extended, smeared.
- Light quark mass comparable to strange.
- 20 eigenvectors, time and colour dilution

A Fitting Robot

• Identify data limitations

- Identify data limitations
- $\chi^2_{\rm PDOF}$ measure of fit

- Identify data limitations
- $\chi^2_{\rm PDOF}$ measure of fit
- Search for maximum sized fit window

- Identify data limitations
- $\chi^2_{\rm PDOF}$ measure of fit
- Search for maximum sized fit window
- t_{min} constrains fit and χ^2_{PDOF} , search in t_{max} direction first

- Identify data limitations
- $\chi^2_{\rm PDOF}$ measure of fit
- Search for maximum sized fit window
- t_{min} constrains fit and χ^2_{PDOF} , search in t_{max} direction first
- Resulting bias largest fit window beginning at lowest t_{min} with acceptable $\chi^2_{\rm PDOF}$ value

Variational Analysis

- Extracting excited-state energies requires matrix of correlators
- For a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}(0) | 0 \rangle$ one defines the N principal correlators $\lambda_{\alpha}(t, t_0)$ as the eigenvalues of

$$C(t_0)^{1/2}C(t)C(t_0)^{1/2}$$

where t_0 (the time defining the metric) is small

- Can show that $\lim_{t \to \inf} \lambda_{lpha}(t,t_0) = e^{-(t-t_0)E_{lpha}}(1+e^{-t\Delta E_{lpha}})$
- N principal effective masses defined by $m_{\alpha}^{eff}(t) = ln(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)})$ now tend (plateau) to the N lowest-lying stationary-state energies, as do the projected correlation functions

Effective Mass (ma_t)

Metric Timeslice

Results

Metric Timeslice

Other Symmetry Channels

Conclusions and Further Work

• Fitting robot works!

Other Symmetry Channels

Conclusions and Further Work

- Fitting robot works!
- Necessary improvements:
 - Consistency check bootstrapping the fit region
 - Ensure no subsequent plateau after fit region

Other Symmetry Channels

Conclusions and Further Work

- Fitting robot works!
- Necessary improvements:
 - Consistency check bootstrapping the fit region
 - Ensure no subsequent plateau after fit region
- Necessary to explore the variational analysis parameter space

Other Symmetry Channels

Conclusions and Further Work

- Fitting robot works!
- Necessary improvements:
 - Consistency check bootstrapping the fit region
 - Ensure no subsequent plateau after fit region
- Necessary to explore the variational analysis parameter space
- Need to replace effective mass plots with more informative visual aid

Alan Ó Cais A Fitting Robot for Variational Analysis

 $Log(C_{t})$

