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Introduction

Example:

Pure quantum state |ψ〉

Density matrix ρ = |ψ〉〈ψ|

Observers A and B ≡ Ā

A’s reduced density matrix

ρA = TrĀρ

Entanglement entropy

SA = −TrAρA log ρA = −
∑

i

λi log λi

Properties: SA = SB ,
for a product state SA = 0,
maximum for a maximally entangled state
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Consider a bipartite system

|Ψ〉 = cos θ| ↑↓〉 + sin θ| ↓↑〉 (1)

The reduced density matrix

ρA = cos2 θ| ↑〉〈↑ | + sin2 θ| ↓〉〈↓ | (2)

The entanglement entropy

SA = −2 cos2 θ log cos θ − 2 sin2 θ log sin θ (3)

SA takes its maximum value of log 2 when cos2 θ = 1
2
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AdS/CFT: Klebanov, Kutasov, Murugan - arXiv:0709.2140 [hep-th]

A = R
d−1 × Il ,

Ā = R
d−1 × (R − Il ), (4)

Il is a line segment of length l .
Non-analytical change in behavior at l = lc reminiscent of phase
transition.

What about finite N?

A.V. Phys.Rev.D77:085021,2008.
e-Print: arXiv:0801.4111 [hep-th]
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The replica trick

2d CFT: P. Calabrese and J. L. Cardy, Int. J. Quant. Inf. 4, 429
(2006)

R

l
1/T

. . .

Figure: Zn for 1 + 1 dimensional gauge theory.
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Trρn
A =

Zn(A)

Z n
, (5)

Note that Z = Z1.

SA = − lim
n→1

∂

∂n
Trρn

A (6)

= − lim
n→1

∂

∂n

Zn(A)

Z n
(7)
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SU(N) gauge theory in d + 1 dimensions

Z =

∫

∏

l

dUl

∏

p

e−Sp , (8)

Sp ≡ S(Up) = −β/(2N)TrUp + h.c .,
β = 2N/g2,
Up =

∏

l∈∂p Ul .
The gauge invariant action is a class function and therefore

e−Sp =
∑

r

Frdrχr (Up) ≡ F0



1 +
∑

r 6=0

crdrχr (Up)



 , (9)

cr = Fr/F0 < 1 and

Fr =

∫

dUe−S(U) 1

dr
χ∗

r (U). (10)
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d = 1 gauge theory

- The 2-dimensional SU(N) gauge theory is exactly solvable.
- An overview and large N treatment of zero temperature U(N)
gauge theory: D. J. Gross and E. Witten, Phys. Rev. D21, 446
(1980)
- Finite temperature gauge theory: R × S1 surface periodic in time
direction with period 1/T .
- The corresponding discretized theory is formulated on a Nr × Nt

lattice, with space-time cut-off a and aNt = 1/T and aNr = R .
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Consider an elementary surface bounded by a single loop ∂A

f ({a}; ∂A) ≡ 1 +
∑

i 6=0

diaiχi(∂A), (11)

A junction of two surface elements A and B with a common

boundary A ∩ B is
A B

f ({c}; ∂(A ∪ B)) =

∫

d(A ∩ B)f ({a}; ∂A)f ({b}; ∂B)

= 1 +
∑

i 6=0

diciχi(∂(A ∪ B)),

ci = aibi . (12)

We use the following character property:
∫

dUχr (VU)χs(U
†W ) =

1

dr
δr ,sχr (VW ). (13)

The junction of the surfaces in the space of character coefficients
is represented by an ordinary product.
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For any 2-dimensional surface:
- expand the partition function in characters
- integrate all the internal plaquettes
The resulting expression for the partition function is

Z =

∫

∏

l∈∂A

dUl

∑

r

FA
r drχr (U∂A), (14)

A = NrNt is the area of the total surface in plaquette units,
∂A is the contour enclosing the surface.

Zn: surface area An = nA = nNrNt and perimeter ∂An.
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The perimeter integration:
1. free b.c. in the spatial direction

The invariance of the group integration − > the perimeter integral
= a single plaquette perimeter (∂A and ∂An).

U∂A = U0,1̂V1,0̂U
†

0,1̂
V

†

2,0̂
. (15)

U
n,̂i

- the gauge field at coordinate n in î = 0, 1 direction (0̂ ≡ t̂).
We use another property of character integration

∫

dU0,1̂χr (U0,1̂V1,0̂U
†

0,1̂
V

†

2,0̂
) =

1

dr
χr (V1,0̂)χr (V

†

2,0̂
) (16)

The integral has support only for the trivial representation χ0 = 1.

Z = FA
0 . (17)

SA = 0. (18)
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2. periodic b.c. in the spatial direction

The perimeter integral for Z
∫

dV

∫

dUχr (UVU†V †) =

∫

dV
1

dr
χr (V )χr (V

†) =
1

dr
, (19)

Z =
∑

r

FA
r . (20)

The Zn perimeter integral results in
∫

dU1...dUn
1

d r

χr (U1)...χr (Un)

dn−1
r

χr (U
†
1)...χr (Un†)

dn−1
r

=
1

d2n−1
r

. (21)

Zn

Z n
=

∑

r F nA
r /d2n−2

r

(
∑

r FA
r )n

=
1 +

∑

r 6=0 cnA
r /d

2(n−1)
r

(1 +
∑

r 6=0 cA
r )n

. (22)

The entanglement entropy then is

SA = −
∂

∂n

Zn

Z n

∣

∣

∣

∣

n=1

= log(1 +
∑

r 6=0

cA
r )−

∑

r 6=0 cA
r log cA

r /d
2
r

1 +
∑

r 6=0 cA
r

. (23)

is l -independent |l 6= 0. End-point transition.
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If A >> 1 one can truncate the series (similarly to the strong
coupling).

Fr ≈

∫

dU

(

1 +
β

2N
[χ1(U) + h.c .]

)

1

dr
χ∗

r (U). (24)

Thus F0 = 1 and c1 = F1 = β/(2N2) for N > 2
The entropy becomes

SA ≈

(

β

2N2

)A (

1 − log

(

(
β

2N2
)A/N2

))

. (25)

Large N limit: In the Gross-Witten notation F0 = z and c1 = ω

F1 = ωz = F0 ×

{

1/λ, λ ≥ 2
1 − λ/4, λ ≤ 2

, (26)

λ = g2N is the ‘t Hooft coupling. Again if A >> 1:

SA ≈ ωA(1 − log
ωA

N2
). (27)

For the strong coupling ω = 1/λ = β/(2N2)
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2 + 1 dimensional gauge theory in a box

gauge theory formulated in a symmetric box R3 at temperature
T = 1/R ,

V

U

The imations with scale factor λ are performed iteratively N times
(λN = R̂ ≡ R/a).

f ({cz}; ∂A) ≡ 1 +
∑

i 6=0

dicz ;iχi(∂Az), z = ±x ,±y , t (28)
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free b.c.

Z =

∫

dUdVf ({cxy ,i};U
†VUV †)f ({ct,i};V )

= 1 +
∑

i 6=0

cxy ,i +
∑

i ,j 6=0

cxy ,idjct,jD
i
ij , (29)

Dk
ij =

∫

dVχk(V
†)χi(V )χj(V ) (30)

coefficients of the Clebsch-Gordan series D(i) ×D(j) =
∑

k Dk
ijD

(k)

for the Kronecker product of irreducible representations.

|G |−1

∫

G

D(j1)(R−1)n1m1D
(j2)(R)n2m2D

(j3)(R)n3m3dR

=

(

j1
n1µ

)(

j1
νm1

)∗ (

j1 j2 j3
µ n2 n3

)∗ (

j1 j2 j3
ν m2 m3

)

, (31)

Dk
ij =

(

k

n1µ

)(

k

νn1

)∗ (

k i j

µ n2 n3

)∗ (

k i j

ν n2 n3

)

.

(32)
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d ≥ 2 gauge theory

1/T

. . .

l

R

Figure: Zn for 2 + 1 dimensional theory.
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We cary out decimations for Zn and Z in exactly the same manner.
The standard MK decimation procedure (λ-transformation):

e−S ′
p(U) =

[

∑

r

FA
r drχr (U)

]ζ1−b

,

Fr =

∫

dUe−ζbSp(U) 1

dr
χ∗

r (U).

here λ is the scaling factor
of the RG transformation; ζ = λd−2

is the factor by which we strengthen
the interaction; A = λ2 is the surface
of the new elementary plaquette;
b = 0 corresponds to Migdal,
while b = 1 to Kadanoff prescription
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The decimation should be altered when the lattice spacing
becomes equal to l (the smallest scale in the problem).
ρ-transformations:

e
−S ′

p;l (U) =

[

∑

r

Fλ
r drχr (U)

]ζ1−b

, (33)

Fr =

∫

dUe−ζbSp;l (U) 1

dr
χ∗

r (U).

We still can move plaquettes in d − 2 direction but the tiling is
done with λ plaquettes. All the other plaquettes are unaffected by
this change and are decimated according to standard
(λ-transformation) procedure.
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l in y direction

Z = 1 +
∑

i 6=0

(cs
x ,i c̄

s
x ,icy ,i )

2 +
∑

i ,j 6=0

(cs
x ,i c̄

s
x ,icy ,i )

2djc
s
t,j c̄

s
t,jD

i
ij , (34)

For Zn we also have n − 1 l -like plaquettes inside the bulk (cs
t,j),

which are moved to the ”bottom”

F̃ s
t,j =

∫

dU



1 +
∑

i 6=0

dic
s
t,iχi (U)





n

1

dj
χj(U

†) (35)

Zn ≡ F̃t,0 · fn = F̃t,0 × (36)


1 +
∑

i 6=0

1

d
4(n−1)
i

(cs
x ,i c̄

s
x ,icy ,i )

2n



1 +
∑

j 6=0

dj c̄
s
t,j c̃

s
t,jD

i
ij
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The entanglement entropy is

SA = − ˙̃
Ft,0 + log Z −

ḟn

Z
(37)

where the dot stands for Ẋ = ∂
∂n

X
∣

∣

n=1
.

ḟn =
∑

i 6=0

(cs
x ,i c̄

s
x ,icy ,i)

2 log
(cs

x ,i c̄
s
x ,icy ,i)

2

d4
i



1 +
∑

j 6=0

dj c̃t,jD
i
ij





+
∑

i 6=0

(cs
x ,i c̄

s
x ,icy ,i)

2
∑

j 6=0

dj
˙̃ct,jD

i
ij (38)

Near the IR fixed point

SA ≈ −(cs
x ,1c̄

s
x ,1cy ,1)

2 log(cs
x ,1c̄

s
x ,1cy ,1)

2 (39)

Note that the dependance on l is encoded in the value of cs
x ,1.
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Analyzing the RG flow

* symmetry: cs
t,i = cs

x ,i = cs
i

* l regulates when λ-transformation is switched to
ρ-transformation, i.e. it sets the initial value for cs

i (m0) under
ρ-transformations.
* Next we analyze the RG flow of SU(2) gauge theory for cs

i (m) as
a function of number of iterations m under Migdal recursion and
depending on the starting point.
* In the numerical simulation we simplify the situation by
considering a starting action in the wilsonian form on Nl(t) = 1
lattice.
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Figure: Migdal decimation flow for 3 + 1 dimensional SU(2) gauge
theory. Projection to c s

1/2 and c s
1 ; (β, λ) are indicated.

l∗c /lc ∈ (1.56, 1.66). (40)
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Figure: Migdal decimation flow for 2 + 1 dimensional SU(2) gauge
theory. Projection to c s

1/2 and c s
1 ; λ = 1.1, β are indicated.

Alexander Velytsky Entanglement entropy in SU(N) gauge theory



Outline Introduction SU(N) in d + 1 Discussion

Discussion of the results

We studied the entanglement entropy in d + 1 SU(N) gauge
theory:

The d = 1 theory is solved exactly: Free spatial b.c. lead to
the trivial result, Periodic b.c. show non-zero universal value
independent of the size l (end-point transition)

Using MK decimation we approximately computed the ratio of
partition functions and entanglement entropy for d ≥ 2

For 3 + 1 SU(2) we demonstrated that there is a
non-analytical change in the RG flow for coefficients c which
define SA.
- l∗c /lc ∈ (1.56, 1.66)
- For large Nc it was shown (Klebanov et al.) that l∗c /lc = 2.
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MK procedure does not find a transition in the RG flow for 2 + 1
dimensional theories (crossover β = 3.2).

It is also interesting to relate our results to studies of the vortex
free-energy order parameter:
-For SU(2) the size of a fat vortex is around 0.7fm ≈ 1/Tc

(Kovacs and E. T. Tomboulis, Phys. Rev. Lett. 85, 704 (2000)).
-We conjecture that the transition in the entanglement entropy
happens when the size of the entangled region is large enough to
accommodate a fat vortex.
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