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Introduction
Introduction

Example:

@ Pure quantum state [¢)

@ Density matrix p = [) (9|
@ Observers A and B = A
°

A’s reduced density matrix

pa =Trzp
@ Entanglement entropy
Sa=—Trapalogpa=— Z Ajlog A
i
@ Properties: Sy = Sg,

for a product state Sy =0,
maximum for a maximally entangled state
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Introduction

Consider a bipartite system
W) = cosd] 1) +sind] |1) (1)

The reduced density matrix

pa=cos® 0 1)(1 | +sin?6] [)(| | (2)

The entanglement entropy
Sp = —2cos? flog cos § — 2sin? @ log sin O (3)

Sa takes its maximum value of log 2 when cos? ) = %
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Introduction

AdS/CFT: Klebanov, Kutasov, Murugan - arXiv:0709.2140 [hep-th]

A = RI1xI,

A = RI7Ix(R-1)), (4)

I; is a line segment of length /.
Non-analytical change in behavior at / = /. reminiscent of phase
transition.

What about finite N?
A.V. Phys.Rev.D77:085021,2008.
e-Print: arXiv:0801.4111 [hep-th]
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Introduction
The replica trick

2d CFT: P. Calabrese and J. L. Cardy, Int. J. Quant. Inf. 4, 429

(2006)

Figure:

Z, for 1 + 1 dimensional gauge theory.
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Introduction

Trp’ =
rpA Z" ) (5)
Note that Z = Z;.
Sa = Jim 5 Tk (6)
0 Zy(A)
— — 7
nlnl an Z"n ( )
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

SU(N) gauge theory in d + 1 dimensions

7= /H dui [[ e, (8)
/ p

Sp = S(Up) = —B/(2N)TrUp + h.c.,
B =2N/g?,
The gauge invariant action is a class function and therefore

e =3 Fdx(Up)=Fo [ 14+ cdxr(Up) |, (9)
r I‘7£0

¢ =F/Fy<1and

F, = /dUe—S(U)diXt(U). (10)
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SU(N)ind +1 2 d auge theory RG flow

d = 1 gauge theory

- The 2-dimensional SU(N) gauge theory is exactly solvable.

- An overview and large N treatment of zero temperature U(N)
gauge theory: D. J. Gross and E. Witten, Phys. Rev. D21, 446
(1980)

- Finite temperature gauge theory: R x S; surface periodic in time
direction with period 1/T.

- The corresponding discretized theory is formulated on a N, x N;
lattice, with space-time cut-off a and aN; = 1/T and aN, = R.
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

Consider an elementary surface bounded by a single loop JA
f({a};0A) = 1+ ) _ diajxi(0A), (11)
i£0

A junction of two surface elements A and B with a common

A B —

boundary AN B is
F({c}:O(AUB)) = /d(A N B)f({a}: DAYF({b}: 0B)

= 1+ch,x, (AU B)),

i#0
¢ = a,-b,-. (12)
We use the following character property:
1
[ upaUiw) = oo w). (13)

The junction of the surfaces in the space of character coefficients
is represented by an ordinary product.
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

For any 2-dimensional surface:

- expand the partition function in characters

- integrate all the internal plaquettes

The resulting expression for the partition function is

Z :/ H dUIZFrAerr(UBA)a (14)

1€0A r

A = N, N; is the area of the total surface in plaquette units,
0A is the contour enclosing the surface.

Z,: surface area A, = nA = nN,.N; and perimeter 0A,,.
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

The perimeter integration:

1. free b.c. in the spatial direction

The invariance of the group integration — > the perimeter integral
= a single plaquette perimeter (OA and 0A,).

_ IR VA
Usa = UO,i VL(AJ UO,i V276. (15)

U, + - the gauge field at coordinate n in i = 0,1 direction (0 = ?).
We use another property of character integration

[ WsxilUoVagUi Vig) = TulViau(Vy)  (6)

The integral has support only for the trivial representation xg = 1.
Z=Fs. (17)

Sa=0. (18)
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

2. periodic b.c. in the spatial direction
The perimeter integral for Z

/dv/dux,(UVUTvT) = /dvdlx,(V)X,(vT) = dl, (19)
Z=>"F\ (20)

The Z, perimeter integral results in

1 Xr(Ul) Xr(U )Xr( ) Xr(U T) 1
/dU1 .dU, "y e e s (21)
Zo L RG4S

zn (SR A+ )

The entanglement entropy then is
d Z, > r 20 clog c?/d?

SA=— 55 =log(1+) ')— . (23)

onZ n=1 ; 1+ Er;ﬁO C;A

is /-independent |/ # 0. End-point transition.
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

If A>> 1 one can truncate the series (similarly to the strong
coupling).
g 1 .
Fr~ [ dU(1+ =[xa(U)+ hc])xr(U). (24)
2N d,

Thus Fo =1 and ¢; = F; = 3/(2N?) for N > 2
The entropy becomes

Sa~ <%>A (1 — log <(%)A/N2>> : (25)

Large N limit: In the Gross-Witten notation Fp = z and ¢; = w

1/, A>2
Fl_wZ_FOX{]__)\/47 )\§27 (26)
A\ = g2?N is the ‘'t Hooft coupling. Again if A >> 1:
A wh
Sa~w'(l—log m) (27)

For the strong coupling w = 1/\ = 3/(2N?)
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

2 + 1 dimensional gauge theory in a box

gauge theory formulated in a symmetric box R at temperature
T =1/R,

The imations with scale factor A\ are performed iteratively N times
(AN =R =R/a).

f({c:};0A) =1+ Z dicsixi(0A;), z=+x,+y,t  (28)
i#0
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

free b.c.

Z = /dUde({cX%,-};UTVUVT)f({ct,-};V)

= 1+ Z Cxy,i + Z ny,idjct,leg'a (29)
i£0 ij#0
D = [ vV (Viu(v) (30)

coefficients of the Clebsch-Gordan series D) x DU) = 37, DEDK)
for the Kronecker product of irreducible representations.

Gl / DU (R py iy DU (R) iy DY) (R) gy IR
G
_( A AN (o BN (o o (31)
nyp vmy B3 v omy m )’
ok k k \"(k i N[k i
y np vny poon2ong v onm nm )’

(32)
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SU(N) ind+1 d =1 2+ 1box d > 2 gauge theory RG flow

d > 2 gauge theory

fffff [ uT

Figure: Z, for 2 + 1 dimensional theory.
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SU(N)ind+1 d =1 2+1box d > 2gauge theory RG flow

We cary out decimations for Z, and Z in exactly the same manner.
The standard MK decimation procedure (A-transformation):

¢cl-b
i ! _5/ [Z F err ] >

1
,"; ”””” / I F, = /dUe‘CbSp(U)in(U)'

here X is the scaling factor

of the RG transformation; ¢ = \972
is the factor by which we strengthen
the interaction; A = A\? is the surface
of the new elementary plaquette;

b = 0 corresponds to Migdal,

while b =1 to Kadanoff prescription
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SU(N)ind+1 d =1 2+1box d > 2gauge theory RG flow

The decimation should be altered when the lattice spacing
becomes equal to / (the smallest scale in the problem).
p-transformations:

leb
e V) = [ZF}d,x,(U)] , (33)
1
F = / dUe—C"SP:'(“)Fx’ﬁ(U)-

We still can move plaquettes in d — 2 direction but the tiling is
done with X\ plaquettes. All the other plaquettes are unaffected by
this change and are decimated according to standard
(A-transformation) procedure.
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SU(N)ind+1 d =1 2+1box d > 2gauge theory RG flow

I'in y direction

_1+Z XIXIC% Z XIXICy’)dCt_[Ct_jDI_Iﬂ (34)
i#0 i,j7#0

For Z, we also have n — 1 /-like plaquettes inside the bulk (¢;
which are moved to the "bottom”

tJj

. 1
F:J:/du 1+ dicg xi(U) EXJ(UT) (35)
i£0 ]

Z = F, n—ift,OX (36)

1+Z 44— 1) CHCAL 1+chlfuai/Dl
:7é0 Jj#0
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SU(N)ind+1 d =1 2+1box d > 2gauge theory RG flow

The entanglement entropy is
: f,
Sp=—Fio+logZ — Vi (37)

y — O
where the dot stands for X = %X|n:1

. (Cf,iaf,icy,i)Z -
fn:Z(CXICXICY7’) T 1—|—Zdet7jD,

i#0 ! Jj#0
+Z Cx,i xICy/ cht.l Dj; 38)
i#0 Jj#0

Near the IR fixed point

Sa~ —(618516y1)* log(€ 185 16y.1)° (39)

Note that the dependance on / is encoded in the value of ¢
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SU(N)ind +1 d=1 2+1box d > 2 gauge theory RG flow

Analyzing the RG flow

* symmetry: ¢, =c¢);=c’

* | regulates when A-transformation is switched to
p-transformation, i.e. it sets the initial value for ¢f(mg) under
p-transformations.

* Next we analyze the RG flow of SU(2) gauge theory for c?(m) as
a function of number of iterations m under Migdal recursion and
depending on the starting point.

* In the numerical simulation we simplify the situation by
considering a starting action in the wilsonian form on Ny;) =1
lattice.
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SU(N)ind +1 d=1 2+1box d 2 gauge theory RG flow
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Figure: Migdal decimation flow for 3 + 1 dimensional SU(2) gauge
theory. Projection to ¢7 , and cf; (8, A) are indicated.

I*/l. € (1.56,1.66). (40)
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SU(N)ind +1 d=1 2+1box d 2 gauge theory RG flow
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Figure: Migdal decimation flow for 2 + 1 dimensional SU(2) gauge
theory. Projection to cls/2 and ¢j; A = 1.1, 3 are indicated.
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Discussion
Discussion of the results

@ We studied the entanglement entropy in d + 1 SU(N) gauge
theory:

@ The d =1 theory is solved exactly: Free spatial b.c. lead to
the trivial result, Periodic b.c. show non-zero universal value
independent of the size / (end-point transition)

@ Using MK decimation we approximately computed the ratio of
partition functions and entanglement entropy for d > 2

@ For 3+ 1 SU(2) we demonstrated that there is a
non-analytical change in the RG flow for coefficients ¢ which
define Sp4.

- I¥/l. € (1.56,1.66)
- For large N. it was shown (Klebanov et al.) that [} /. = 2.
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Discussion

MK procedure does not find a transition in the RG flow for 2 4+ 1
dimensional theories (crossover § = 3.2).

It is also interesting to relate our results to studies of the vortex
free-energy order parameter:

-For SU(2) the size of a fat vortex is around 0.7fm ~ 1/ T,
(Kovacs and E. T. Tomboulis, Phys. Rev. Lett. 85, 704 (2000)).
-We conjecture that the transition in the entanglement entropy
happens when the size of the entangled region is large enough to
accommodate a fat vortex.
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