HISQ action in dynamical simulations

A. Bazavov, C. Bernard, C. DeTar, W. Freeman,
S. Gottlieb, U.M. Heller, J.E. Hetrick, J. Laiho,
L. Levkova, J. Osborn, R. Sugar, D. Toussaint (MILC Collaboration)

July 15, 2008

HISQ action

Fermion force

Exploratory study of the pion spectrum

Conclusions

HISQ action

- HISQ = Highly Improved Staggered Quarks ${ }^{1}$
- $O\left(a^{2}\right)$ Symanzik-improved action with further suppressed taste-symmetry violations
- Additional suppression of taste-exchange interactions is achieved by replacing the original gauge links in the Dirac operator by

$$
U \rightarrow \mathcal{F}_{2} \mathcal{U} \mathcal{F}_{1} U
$$

- \mathcal{F}_{1} - smearing level 1 (Fat 7)
- \mathcal{U} - reunitarization
- \mathcal{F}_{2} - smearing level 2 (Asq)

[^0]
Fermion force

- Calculated as the derivative of the action using the chain rule:

$$
\frac{\partial S}{\partial U}=\frac{\partial S}{\partial X} \frac{\partial X}{\partial W} \frac{\partial W}{\partial V} \frac{\partial V}{\partial U}
$$

- where
- U - fundamental gauge links
- V - fat links level 1
- W - reunitarized links
- X - fat links level 2
- The following parts are the same as for Asqtad:

$$
\frac{\partial S}{\partial X}, \frac{\partial X}{\partial W}, \frac{\partial V}{\partial U}
$$

Reunitarization

- For projecting to $U(3)$ we have chosen

$$
W=V\left(V^{\dagger} V\right)^{-1 / 2}
$$

- The derivative

$$
\frac{\partial W}{\partial V}
$$

can be calculated analytically by applying Cayley-Hamilton theorem ${ }^{2}$

$$
Q^{-1 / 2}=f_{0}+f_{1} Q+f_{2} Q^{2}, \quad Q=V^{\dagger} V
$$

- May give large contribution to the force
${ }^{2}$ C. Morningstar, M.J. Peardon, Phys. Rev. D 69 (2004) 054501, Hasenfratz, Hoffmann, Schaefer, JHEP 05 (2007) 029

Example of reunitarization for $\mathrm{U}(1)$

- Let $V=r e^{i \theta}$, then $W=e^{i \theta}$
- The derivative

$$
\begin{aligned}
\frac{\partial W}{\partial V} & =\left(\frac{\partial W}{\partial V}\right)_{V^{\dagger}}=\frac{\partial\left(W, V^{\dagger}\right)}{\partial\left(V, V^{\dagger}\right)} \\
& =\frac{\partial\left(W, V^{\dagger}\right)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial\left(V, V^{\dagger}\right)}=\frac{1}{2 r}
\end{aligned}
$$

- For matrix case the derivative is dominated by the smallest eigenvalue of V

Change in the action during MD evolution

Outliers in the histogram are caused by exceptionally large forces

Spikes in the force and det $|V|$

Fermion force for different ensembles

Exploratory study

Two $2+1+1$ flavor ensembles (50-60 configurations):

- b675m010m050m600, $20^{3} \times 64$
- time step 0.0417 (70% acceptance) (0.049 for Asqtad)
- $a=0.127 \mathrm{fm}\left(r_{1} / a=2.50\right.$ from the static potential)
- b707m007m035m420, $28^{3} \times 96$
- time step 0.03125 (70% acceptance) (0.038 for Asqtad)
- $a=0.093 \mathrm{fm}\left(r_{1} / a=3.43\right.$ from the static potential)

Recently started $2+1+1$ flavor ensemble (~ 6 configurations):

- b747m004m020m240, $48^{3} \times 144$
- time step 0.0125 ($\sim 60-70 \%$ acceptance)
- $a \sim 0.06 \mathrm{fm}\left(r_{1} / a \sim 5.3\right.$ from the static potential)

Pion splittings

Ensemble: b675m010m050m600

$$
\Delta \equiv m^{2}-m_{\text {PION_5 }}^{2}, \quad R \equiv \frac{\Delta_{\text {ASQ }}}{\Delta_{\text {HISQ }}}
$$

	$m_{\text {ASQ }}(658)$	$m_{\text {HISQ }}(40)$	$\Delta_{\text {ASQ }}$	$\Delta_{\text {HISQ }}$	R
P_5	$0.2244(02)$	$0.1889(07)$			
P_05	$0.2815(11)$	$0.2071(27)$	$0.029(1)$	$0.0072(11)$	$4.0(6)$
P_i5	$0.2822(05)$	$0.2058(10)$	$0.029(0)$	$0.0067(05)$	$4.4(3)$
P_ij	$0.3134(20)$	$0.2224(33)$	$0.048(1)$	$0.0138(15)$	$3.5(4)$
P_i0	$0.3126(11)$	$0.2188(19)$	$0.047(1)$	$0.0122(08)$	$3.9(3)$
P_i	$0.3347(28)$	$0.2306(56)$	$0.048(1)$	$0.0175(26)$	$3.5(5)$
P_0	$0.3373(15)$	$0.2311(22)$	$0.063(1)$	$0.0178(10)$	$3.6(2)$
P_s	$0.359(5)$	$0.252(12)$	$0.048(1)$	$0.0280(61)$	$2.8(6)$

Pion splittings

Ensemble: b707m007m035m420

$$
\Delta \equiv m^{2}-m_{\text {PION_5 }}^{2}, \quad R \equiv \frac{\Delta_{\text {ASQ }}}{\Delta_{\text {HISQ }}}
$$

	$m_{\text {ASQ }}(572)$	$m_{\text {HISQ }}(50)$	$\Delta_{\text {ASQ }}$	$\Delta_{\text {HISQ }}$	R
P_5	$0.2069(05)$	$0.1378(08)$			
P_05	$0.2177(10)$	$0.1420(08)$	$0.0046(5)$	$0.0012(4)$	$4(1)$
P_i5	$0.2187(07)$	$0.1428(08)$	$0.0050(4)$	$0.0014(3)$	$3.6(8)$
P_ij	$0.2256(11)$	$0.1467(21)$	$0.0081(5)$	$0.0025(7)$	$3.2(8)$
P_i0	$0.2259(07)$	$0.1475(11)$	$0.0082(4)$	$0.0028(4)$	$3.0(4)$
P_i	$0.2311(15)$	$0.1485(16)$	$0.0106(7)$	$0.0031(5)$	$3.5(6)$
P_0	$0.2318(10)$	$0.1509(11)$	$0.0109(5)$	$0.0038(4)$	$2.9(3)$
P_s	$0.2398(25)$	$0.1522(27)$	$0.015(1)$	$0.0042(9)$	$3.5(8)$

Conclusions

- The reunitarization step introduces spikes in the fermion force whenever a matrix with small determinant is created during the smearing level 1
- Spikes lead to large fluctuations in the action increasing the number of rejected trajectories
- This problem becomes less severe closer to the continuum limit where gauge configurations are smoother
- Comparing to Asqtad two levels of smearing in HISQ action tend to create smoother configurations that require less iterations of the conjugate gradient
- Including the charm quark is cheap for CG, but more expensive for building fat links due to the correction to the Naik term

Valence: HISQ/Sea: Asqtad

Ensemble: b676m010m050, tuned $m_{\text {val }}=0.01365$

$$
\Delta \equiv m^{2}-m_{\text {PION_5 }}^{2}, \quad R \equiv \frac{\Delta_{A S Q}}{\Delta_{H I S Q}}
$$

	$m_{\text {ASQ }}(658)$	$m_{\text {HISQ }}(128)$	$\Delta_{\text {ASQ }}$	$\Delta_{\text {HISQ }}$	R
PION_5	$0.2244(02)$	$0.2224(04)$			
PION_05	$0.2815(11)$	$0.2439(12)$	$0.029(1)$	$0.0100(6)$	2.9
PION_i5	$0.2822(05)$	$0.2433(07)$	$0.029(0)$	$0.0097(4)$	3.0
PION_ij	$0.3134(20)$	$0.2630(20)$	$0.048(1)$	$0.020(1)$	2.4
PION_i0	$0.3126(11)$	$0.2634(12)$	$0.047(1)$	$0.0199(7)$	2.4
PION_i	$0.3347(28)$	$0.2815(64)$	$0.062(2)$	$0.030(4)$	2.1
PION_O	$0.3373(15)$	$0.2813(17)$	$0.063(1)$	$0.0297(1)$	2.1
PION_s	$0.359(5)$	$0.2882(49)$	$0.079(4)$	$0.034(4)$	2.4

Valence: HISQ-Stout/Sea: Asqtad

Ensemble: b676m010m050, tuned $m_{\text {val }}=0.01365$

$$
\Delta \equiv m^{2}-m_{\text {PION_5 }}^{2}, \quad R \equiv \frac{\Delta_{\text {ASQ }}}{\Delta_{\text {HISQ-S }}}
$$

	$m_{\text {ASQ }}(658)$	$m_{H-S}(124)$	$\Delta_{A S Q}$	$\Delta_{\text {HISQ-S }}$	R
PION_5	$0.2244(02)$	$0.2358(04)$			
PION_05	$0.2815(11)$	$0.2686(15)$	$0.029(1)$	$0.0165(8)$	1.8
PION_i5	$0.2822(05)$	$0.2690(08)$	$0.029(0)$	$0.0168(4)$	1.7
PION_ij	$0.3134(20)$	$0.2955(34)$	$0.048(1)$	$0.0317(2)$	1.5
PION_i0	$0.3126(11)$	$0.2963(13)$	$0.047(1)$	$0.0322(8)$	1.5
PION_i	$0.3347(28)$	$0.3119(35)$	$0.062(2)$	$0.042(2)$	1.5
PION_0	$0.3373(15)$	$0.3196(23)$	$0.063(1)$	$0.047(2)$	1.4
PION_s	$0.359(5)$	$0.3301(66)$	$0.079(4)$	$0.053(4)$	1.5

[^0]: ${ }^{1}$ E. Follana, Q. Mason, C. Davies, K. Hornbostel, G.P. Lepage, J. Shigemitsu, H. Trottier, K. Wong, Phys. Rev. D 75 (2007) 054502

