K-meson vector decay constant and B-parameter from $N_{f}=2$ tmQCD

Lattice 2008

A.Vladikas
 INFN - TOR VERGATA

College of William \& Mary Williamsburg (VI) USA 14/7-19/7 2008

Generalities

- ETMC is performing state-of-the-art lattice QCD simulations with $N_{f}=2$ dynamical flavours (sea quarks), with "lightish" masses ($300 \mathrm{MeV} \leq$ mps $\leq 550 \mathrm{MeV}$).
- Several quantities are being analyzed for a couple of β 's.
- With $N_{f}=2$ sea quarks, strangeness enters the game in a partially quenched context.
- In this talk we will show preliminary results on the following quantities:
- $m_{K^{*}}$
- $f_{K}{ }^{*}$
- $\left[f_{T} / f_{V}\right]_{K}$
- B_{K}
- In parallel, other ETMC subgroups have been working on decay constants in the light and strange quark sector (see talks by C. McNeile and C.Tarantino).
- Collaborators: P.Dimopoullos, R.Frezzotti, V.Gimenez, V.Lubicz, F.Mescia, G.C. Rossi, S. Simula.

Theory

- ETMC simulations are performed with the tree-level Symanzik improved gauge action.
- The $N_{f}=2$ sea quark flavours are regularized by the standard Wilson fermion action with a fully twisted mass term (standard tmQCD).

$$
\begin{gathered}
\bar{\psi}=\left(\begin{array}{cc}
\bar{u} & \bar{d}
\end{array}\right) \\
\mathcal{L}_{t m}=\bar{\psi}\left[D_{W}+i \mu_{q} \tau^{3} \gamma_{5}\right] \psi
\end{gathered}
$$

- This has the usual advantages:
- Renormalization properties are, in many cases of interest (e.g. pseudoscaler decay constants, $B_{k} \ldots$) much simpler than with standard Wilson quarks.
Alpha Collab., R. Frezzotti, P.A. Grassi, S. Sint and P.Weisz, JHEP08 (200I) 058
- Improvement is automatic with full twist (i.e. imaginary mass term only).
R. Frezzotti, G.C. Rossi, JHEP08 (2004) 007

Theory

- ETMC simulations are performed with the tree-level Symanzik improved gauge action.
- The $N_{f}=2$ sea quark flavours are regularized by the standard Wilson fermion action with a fully twisted mass term (standard tmQCD).

$$
\begin{gathered}
\bar{\psi}=\left(\begin{array}{cc}
\bar{u} & \bar{d}
\end{array}\right) \\
\mathcal{L}_{t m}=\bar{\psi}\left[D_{W}+i \mu_{q} \tau^{3} \gamma_{5}\right] \psi
\end{gathered}
$$

- But this is true for most, not all, quantities of interest .
- In particular, for WMEs of 4-fermion operators (e.g. B_{K}), it is not possible to have standard tmQCD formalism, with all flavours at full twist (i.e. automatic improvement), and multiplicative renormalization.

Theory

- ETMC simulations are performed with the tree-level Symanzik improved gauge action.
- The $N_{f}=2$ sea quark flavours are regularized by the standard Wilson fermion action with a fully twisted mass term (standard tmQCD).

$$
\mathcal{L}_{O S}=\bar{\psi}_{f}\left[D_{W}+i \mu_{f} \gamma_{5}\right] \psi_{f} \quad f=u, d, s \cdots
$$

- One way out is provided by the Osterwalder-Seiler (OS) variant of tmQCD.
- Valence quarks enter with a distinct action for each flavour, which is fully twisted.
- quark fields are not organized in isospin doublets (i.e. no T^{3}).
- there is a separate mass term for each flavour, μ_{f} may be negative.

Theory

- ETMC simulations are performed with the tree-level Symanzik improved gauge action.
- The $N_{f}=2$ sea quark flavours are regularized by the standard Wilson fermion action with a fully twisted mass term (standard tmQCD).

$$
\mathcal{L}_{O S}=\bar{\psi}_{f}\left[D_{W}+i \mu_{f} \gamma_{5}\right] \psi_{f} \quad f=u, d, s \cdots
$$

- One way out is provided by the Osterwalder-Seiler (OS) variant of tmQCD.
- Valence quarks enter with a distinct action for each flavour, which is fully twisted.
- Suitable combinations of μ_{f} signs for each flavour ensure automatic improvement and multiplicative renormalization for say, B_{K}.
R. Frezzotti, G.C. Rossi, JHEPIO (2004) 070

Theory

- ETMC simulations are performed with the tree-level Symanzik improved gauge action.
- The $N_{f}=2$ sea quark flavours are regularized by the standard Wilson fermion action with a fully twisted mass term (standard tmQCD).

$$
\mathcal{L}_{O S}=\bar{\psi}_{f}\left[D_{W}+i \mu_{f} \gamma_{5}\right] \psi_{f} \quad f=u, d, s \cdots
$$

- One way out is provided by the Osterwalder-Seiler (OS) variant of tmQCD.
- Valence quarks enter with a distinct action for each flavour, which is fully twisted.
- This is a compromise (unitarity issues arise when sea and valence flavours are treated differently) but in our partially quenched setup ($N_{f}=2$ sea quark flavours and a valence strange quark) this is unavoidable for any regularization.

The Simulation

- The ETMC runs are performed at three gauge couplings β.
- The master run: 240 measurements at $\beta=3.90$, corresponding to $a \approx 0.086(\mathrm{I}) \mathrm{fm}$ [i.e. $I / a \approx 2.3 \mathrm{GeV}$] and volume $V=24^{3} \times 48$
- 5 sea quark masses: $\mu=0.0040,0.0064,0.00850 .0100,0.0150$
($300 \mathrm{MeV} \leq \mathrm{mps}^{\mathrm{M}} 555 \mathrm{MeV}$)
ETMC, Ph. Boucauld et al., Phys. Lett. B650 (2007) 304
- 7 valence quark masses; the extra ones are: $\mu=0.0220,0.0270\left(\sim m_{\text {strange }}\right)$

ETMC, B. Blossier et al., JHEP 04 (2008) 020

- use existing calibrations: $a \mu_{d}=a \mu\left(m_{\pi}\right)=0.00079$ and $a \mu_{s}=a \mu\left(m_{K}\right)=0.02 \mathrm{I} 7(\mathrm{I} 0)$
- For B_{k} only, at $\beta=3.90$, we did 200 measurements so far.
- For B_{K} only, we checked for finite volume effects at $V=32^{3} \times 64$ for $\mu=0.0040$.
- For B_{K} only, we did a rough scaling test at $\beta=4.05, \mu=0.0030, V=32^{3} \times 64$ and 100 measurements.

K^{*} meson mass and decay constant

- P. Dimopoullos, S. Simula, A.V.

Caveats

- We encountered low quality signals in two cases:
- I: For all sea quark masses, when the valence quark masses are in the lightest range (say $\mu_{\text {val }}=0.0040$)

K^{*} meson mass and decay constant

- P. Dimopoullos, S. Simula, A.V.

Caveats

- We encountered low quality signals in two cases:
- Nevertheless, since the signal-to-noise ratio is as expected $\sim \exp \left[-\left(m_{v}-m_{p s}\right) \mathrm{t}\right]$; ρ-meson mass and decay constant may be extracted (C.McNeile, this conference).

K^{*} meson mass and decay constant

- P. Dimopoullos, S. Simula, A.V.

Caveats

- We encountered low quality signals in two cases:
- II: For valence quarks lighter than the sea quarks $\left(\mu_{\text {val }} \leq \mu_{\text {sea }}\right)$ (NB: unlike pseudoscalar case, where everything seems OK)

K^{*} meson mass and decay constant

- In all other cases the signal is satisfactory, so we analyze correlation functions consisting of:
- one "light" valence quark ($\mu_{l}=\mu_{\text {sea }}=0.0040,0.0064,0.00850 .0100,0.0 \mid 50$);
- one "heavy" valence quark ($\mu_{h}=0.0150,0.0220 .0 .0270$).
- Plateau: $\| \leq t \leq 16$

K^{*} meson mass and decay constant

- The vector meson mass and the observables of interest:

$$
\begin{array}{rll}
\langle 0| V_{k}|V ; \lambda\rangle & =f_{V} m_{V} \epsilon_{k}^{\lambda} \\
\langle 0| T_{0 k}|V ; \lambda\rangle & = & -i f_{T} m_{V} \epsilon_{k}^{\lambda}
\end{array}
$$

- are obtained from the correlation functions
- and the ratio

$$
\begin{aligned}
C_{V V} & =\sum_{\vec{x}, k}<V_{k}(x) V_{k}^{\dagger}(0)> \\
C_{T T} & =\sum_{\vec{x}, k}<T_{0 k}(x) T_{0 k}^{\dagger}(0)>
\end{aligned}
$$

$$
\frac{f_{T}}{f_{V}} \sim\left[\frac{C_{T T}(t)}{C_{V V}(t)}\right]^{1 / 2}
$$

- NB: valence quark propagators (also for B_{k}) are not computed from standard inversions of the Dirac operator (i.e. point-like sources), but from stochastic sources of the so-called extended one-end trick.
M. Foster, C. Michael, Phys.Rev.D59 (I999) 074503
C.McNeile, C.Michael, Phys.Rev.D73 (2006) 074506

K^{*} meson mass and decay constant

- The vector meson mass and the observables of interest:

$$
\begin{aligned}
<0\left|V_{k}\right| V ; \lambda> & =f_{V} m_{V} \epsilon_{k}^{\lambda} \\
<0\left|T_{0 k}\right| V ; \lambda> & =-i f_{T} m_{V} \epsilon_{k}^{\lambda}
\end{aligned}
$$

- are obtained from the correlation functions
- and the ratio $\quad \frac{f_{T}}{f_{V}} \sim\left[\frac{C_{T T}(t)}{C_{V V}(t)}\right]^{1 / 2}$

$$
\begin{aligned}
C_{V V} & =\sum_{\vec{x}, k}<V_{k}(x) V_{k}^{\dagger}(0)> \\
C_{T T} & =\sum_{\vec{x}, k}<T_{0 k}(x) T_{0 k}^{\dagger}(0)>
\end{aligned}
$$

- $\quad \mathrm{NB}$:The required (re)normalization factors $\left(Z_{A}, Z_{T}\right)$ are computed non-perturbatively in the $\mathrm{RI} / \mathrm{MOM}$ scheme at a scale $\mu=1 / \mathrm{a} \approx 2.3 \mathrm{GeV}$
- $Z_{A}=0.77 I(4) \quad Z_{T}(I / a)=0.769$ (4)

Decay constant f_{v} and ratio f_{T} / f_{v}

Mass extrapolations for m_{v}

- At each fixed μ_{h}, we extrapolate linearly in $\mu_{l} \rightarrow \mu_{d}$
- We subsequently interpolate the μ_{h} results in $\mu_{h} \rightarrow \mu_{s}$

Mass extrapolations for fv

- At each fixed μ_{h}, we extrapolate linearly in $\mu_{l} \rightarrow \mu_{d}$
- We subsequently interpolate the μ_{h} results in $\mu_{h} \rightarrow \mu_{s}$

Mass extrapolations for f_{T} / f_{V}

- At each fixed μ_{h}, we extrapolate linearly in $\mu_{l} \rightarrow \mu_{d}$
- We subsequently interpolate the μ_{h} results in $\mu_{h} \rightarrow \mu_{s}$

Resuts for m_{v}, f_{v} and f_{T} / f_{v}

$$
\begin{aligned}
a M_{V}^{K^{*}} & =0.437(08)(04) \\
a f_{V}^{K^{*}} & =0.117(03)(01) \\
f_{T} /\left.f_{V}\right|_{K^{*}} & =0.759(19)(03)
\end{aligned}
$$

NB: analysis repeated with OS valence quarks

Resuts for $m v, f_{v}$ and $f_{T} / f v$
$a M_{V}^{K^{*}}=0.437(08)(04)$
$a f_{V}^{K^{*}}=0.117(03)(01)$
$f_{T} /\left.f_{V}\right|_{K^{*}}=0.759(19)(03)$
Doing the RG running from $\mathrm{I} / \mathrm{a}=2.3 \mathrm{GeV}$ to 2 GeV we find:
$\left[f_{T} / f v\right]_{k^{*}}=0.764$ (19)(03)
D. Becirevic, V. Lubicz, F. Mescia C.Tarantino, JHEP05 (2003) 007

NB: continuum quenched result $\quad\left[f_{T} / f_{v}\right]_{K^{*}}=0.74(2)$

$B_{\kappa}:$ a progress report

- Recall that we require both automatic improvement and multiplicative renormalization; thus the setup is that of OS valence quarks.
- We have two walls with noise sources at fixed times and a moving 4-fermion operator.

- P. Dimopoullos, R. Frezzotti, V. Gimenez, V. Lubicz, F. Mescia, G.C. Rossi, A.V.

B_{K} : finite volume effects

B_{k} : scaling effects (VERY ROUGH!!!)

B_{K} : chiral fits

- At fixed μ_{h}, we fit the light mass behaviour in $\mu_{l}=\mu_{v}$, using PQ-ChPT
- in general $\mu_{v} \neq \mu_{\text {sea }}$ gives rise to chiral logs

RBC/UKQCD C.Allton et al., 0804.0473 [hep-lat]
S.R.Sharpe and Y. Zhang, Phys. Rev. D53 (1996) 5I25

$$
B\left(\mu_{h}\right)=B_{\chi}\left(\mu_{h}\right)\left[1+b_{1}\left(\mu_{h}\right) \frac{2 B_{0}}{f^{2}} \mu_{\text {sea }}+b_{2}\left(\mu_{h}\right) \frac{2 B_{0}}{f^{2}} \mu_{v}-\frac{2 B_{0}}{32 \pi^{2} f^{2}} \mu_{\text {sea }} \ln \left(\frac{2 B_{0} \mu_{v}}{\Lambda_{\chi}^{2}}\right)\right]
$$

- This simplifies to a 2-parameter fit with a well defined chiral limit when $\mu_{v}=\mu_{\text {sea }}$.

B_{k} : chiral fits

- At fixed μ_{h}, we fit the light mass behaviour in $\mu_{I}=\mu_{\text {val }}$, using PQ-ChPT
- in general $\mu_{\text {val }} \neq \mu_{\text {sea }}$ gives rise to chiral logs

RBC/UKQCD C.Allton et al., 0804.0473 [hep-lat]

S.R.Sharpe and Y. Zhang, Phys. Rev. D53 (1996) 5 I25

$$
B\left(\mu_{h}\right)=B_{\chi}\left(\mu_{h}\right)\left[1+b_{1}\left(\mu_{h}\right) \frac{2 B_{0}}{f^{2}} \mu_{\text {sea }}+b_{2}\left(\mu_{h}\right) \frac{2 B_{0}}{f^{2}} \mu_{v}-\frac{2 B_{0}}{32 \pi^{2} f^{2}} \mu_{\text {sea }} \ln \left(\frac{2 B_{0} \mu_{v}}{\Lambda_{\chi}^{2}}\right)\right]
$$

- This simplifies to a 2-parameter fit with a well defined chiral limit when $\mu_{\text {val }}=\mu_{\text {sea }}$.

Fixed by earlier ETMC chiral fit in the light sector

- Polynomial fitting alternatives are in the works!

B_{K} : chiral fits

- At fixed μ_{s}, close to the physical strange mass we fit for $\mu_{d}=\mu_{\text {sea }}$

B_{k} : chiral fits

- Now interpolate the previous (physical μ_{d} result) in μ_{s}

Interpolation to the strange Mass on $3 \mu_{h}$

B_{k} : renormalization

- $\mathrm{RI} / \mathrm{MOM}$ scheme implemented

B_{k} : renormalization

- $\mathrm{RI} / \mathrm{MOM}$ scheme implemented

Renormalization constants of four quark operators
Twisted mass $\beta=3.9 \mathrm{~V}=24^{3} \mathrm{X} 48$ TISym $\mu_{\text {sea }}=0.0040$

B_{k} : caveat

- At fixed β, the two Kaon states, obtained with different regularizations (i.e. standard tm and OS) are not degenerate, differing by $O\left(a^{2}\right)$ terms.
- The two different exponential decays cancel in the B_{K} ratio.
- We are left with a matrix element $<\bar{K}^{0}\left(m_{K}^{t m}\right)\left|O_{V A+A V}\right| K^{0}\left(m_{K}^{O S}\right)>\propto m_{K}^{t m} m_{K}^{O S}$

$$
\begin{aligned}
& a m_{P S}^{O S}=0.2923(\mid 6) \\
& a m_{P S}^{t m}=0.2391(07)
\end{aligned}
$$

B_{k} : a our first VERY ROUGH estimate

Although a lot is still missing for giving a definitive result, we cannot resist from fooling around with our preliminary numbers:
$B_{k}(\beta=3.9)=0.58 \mathrm{I}(7)$ (bare)
$Z_{V A+A V}(\beta=3.9 ; 2 \mathrm{GeV} ; \mathrm{RI} / \mathrm{MOM})=0.454(\mathrm{I} 8)$
$Z_{v}(\beta=3.9)=0.771$
$Z_{A}(\beta=3.9)=0.6104$
$\mathrm{B}_{\mathrm{k}}(2.0 \mathrm{GeV} ; \mathrm{RI} / \mathrm{MOM}) \approx 0.56(2)$ (renormalized)
$B_{k}(2.0 \mathrm{GeV} ; \mathrm{RI} / \mathrm{MOM}) \approx 0.77(3)(\mathrm{RGI})$
NB: this is far from being our definitive, result!!!!!!
But how does it compare with the results of other groups?

B_{k} : a "ballpark plot"

- This is not a world data plot! It is a compilation of existing results, in order to confirm that our preliminary BK is in the right ballpark.

