Spectrum of closed k-strings in $D=2+1^*$

Andreas Athenodorou †

Rudolf Peierls Center for Theoretical Physics

St John's College

University of Oxford

July 18th, 2008 The XXVI International Symposium on Lattice Field Theory Williamsburg, Virginia

* With Barak Bringoltz and Mike Teper

[†]Speaker supported by the European Network: "Quest for Unification"

Overview

- 1. Introduction
- 2. Nambu-Goto Effective String Theory
- 3. Lattice Calculation
- 4. **Results**
- 5. Conclusions
- 6. In Progress: D = 3 + 1

1. Introduction

- ♦ What effective string theory describes the confining flux-tube?
- ♦ If source transforms as $\psi(x) \longrightarrow z^k \psi(x), z \in Z_N \implies k$ -string.
- \diamond k-strings
 - AdS/CFT, MQCD. (Strassler, Armoni, Shiffman...)
 - Hamiltonian approach. (Karabali, Nair, ...)
 - Lattice.
- \diamond Recently:
 - -k = 1 string (fundamental string) is very well approximated by Nambu-Goto (+moderate corrections).
 - k-string ground state: in the same universality class as N.G.
- ♦ The excitation spectrum still remains unexplored:
 - $\longrightarrow k = 2$ excitation spectrum.

2. Nambu-Goto Effective String Theory: Spectrum The Spectrum of the Nambu-Goto (NG) String Model

♦ Spectrum given by:

$$E_{N_L,N_R,q,w}^2 = (\sigma l w)^2 + 8\pi \sigma \left(\frac{N_L + N_R}{2} - \frac{D-2}{24}\right) + \left(\frac{2\pi q}{l}\right)^2$$

- ♦ Described by:
 - 1. The winding number w.
 - 2. The winding momentum $p_{\parallel} = 2\pi q/l$ with $q = 0, \pm 1, \pm 2,...$
 - 3. $N_L = \sum_{k>0} \sum_{n_L(k)>0} n_L(k)k$ and $N_R = \sum_{k'>0} \sum_{n_R(k')>0} n_R(k')k'$ connected through the relation: $N_R N_L = qw$.
- ♦ String states can be characterised by irreducible representations of SO(D 2). In 2+1 dimensions this can be translated to Parity with eigenvalues:

 $P = (-1)^{\text{number of phonons}}.$

2. Nambu-Goto effective string theory: Corrections

 \diamond Lüscher&Weisz(04) effective string action:

(Drummond '04, Dass and Matlock '06 for any D.)

$$E_{n} = \sigma l + \frac{4\pi}{l} \left(n - \frac{1}{24} \right) - \frac{8\pi^{2}}{\sigma l^{3}} \left(n - \frac{1}{24} \right)^{2} + \mathcal{O}\left(1/l^{4} \right).$$

♦ Equivalently:

$$E_n^2 = \left(\sigma l\right)^2 + 8\pi\sigma\left(n - \frac{1}{24}\right) + \mathcal{O}\left(1/l^3\right).$$

♦ Fitting Ansatz:

$$E_{\text{fit}}^2 = E_{NG}^2(q=0) - \sigma \frac{C_p}{(l\sqrt{\sigma})^p} \qquad (p \ge 3).$$

3. Lattice Calculation

- ♦ A lot of effort has been invested in: 3D, 4D cases of Z_2 , Z_4 , U(1), $SU(N \le 8)$ (Caselle and collaborators, Gliozzi and collaborators, Kuti and collaborators, Lüscher&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)
- ♦ We study **closed flux tubes**.
- ♦ Our approach:
 - Create a large basis of operators ($\sim 80 250$).
 - Calculate the correlation matrix $C_{ij,p,\pm}(t) = \langle \Phi_{i,p,\pm}^{\dagger}(t) \Phi_{j,p,\pm}(0) \rangle$.
 - Use the variational technique.
- ♦ We define our theory on a 3D Euclidean lattice with $L \times L_{\perp} \times L_T$ sites.
- ♦ Monte Carlo simulations for N = 4, 5 and $\beta = 50.00$ and 80.00.

3. Lattice Calculation

 \diamond Operators: If U is a Polyakov loop then:

- For $k = 1, \phi \equiv \bigcirc \equiv \operatorname{Tr}\{U\}$

- For $k = 2, \phi_1 \equiv \bigcirc \equiv \operatorname{Tr}\{U^2\}, \phi_2 \equiv \bigcirc \equiv \operatorname{Tr}\{U\}\operatorname{Tr}\{U\}$

♦ Now, we are interested in excited states $(N_R \neq 0, N_L \neq 0, q \neq 0)$

 $\begin{array}{c} \diamond \text{ Example: operators with tranverse deformations for } P = \pm : \\ 1^{\text{st}}: \phi = \text{Tr } \{ _____\}^2 \pm \text{Tr} \{ _____]^2 \\ 2^{\text{nd}}: \phi = \text{Tr } \{ ______] \pm \text{Tr} \{ ______] \\ 3^{\text{rd}} \text{ Additionally } (w = 2): \\ \phi = \text{Tr } \{ _____] \pm \text{Tr} \{ _____] \\ L \\ L \\ L \\ \end{array}$

3. Lattice Calculation

♦ Projection onto the Antisymmetric representation:

 $\phi = [\operatorname{Tr} \{ ___]^2 - \operatorname{Tr} \{ ___] \pm [\operatorname{Tr} \{ ___]^2 - \operatorname{Tr} \{ ___] \}]$

♦ Projection onto the Symmetric representation:

 $\phi = [\operatorname{Tr} \{ ___]^2 + \operatorname{Tr} \{ ___] \pm [\operatorname{Tr} \{ ___]^2 + \operatorname{Tr} \{ ___] \}]$

 \diamond Polyakov lines (×5 blocking-smearing levels):

4. Results: Fundamental representation

<u>Groups</u>: SU(3) and SU(6), $\underline{a} \simeq 0.04 fm$ and 0.08 fm.

Quantum Numbers: $P = \pm$ and q = 0

4. Results: Antisymmetric Representation for P = +, q = 0Group: SU(4), $\beta = 50.00$, $\underline{a} \simeq 0.06 fm$

4. Results: Symmetric Representation for P = +, q = 0Group: SU(4), $\beta = 50.00$, $\underline{a} \simeq 0.06 fm$

4. Results: Antisymmetric Representation, q = 1, 2

Projecting on the antisymmetric representation of SU(4):

4. Results: Antisymmetric Representation, q = 1, 2

Projecting onto the antisymmetric representation of SU(5):

4. Results: k = 2 energy towers for P = +, q = 0, SU(4)

Energy Towers for P = +, q = 0, SU(4)

4. Results: Ground States for P = +, q = 0, SU(5)

4. Results: Extra states

1. w = 2 N.G states?

2. Massive states that cannot be accommodated in the N.G framework?

5. Conclusions

- $\diamond~$ Our k=2 spectrum falls into the symmetric and antisymmetric representations
- \implies k-strings know about the full gauge group and not just about its centre.
- $\diamond \ k = 2A$ spectrum is clearly well described by Nambu-Goto.
- \diamond Qualitative difference between the k = 1 and k = 2 ground states.
- $\diamond k = 2$ spectrum is rich.

6. In Progress: D = 3 + 1

- ◊ Interested in the more complicated case of 3+1 dimensions. (calculations are under way).
 - \star Described by more irreducible representations.
 - \star Transverse deformations in two directions.

 \star Quantum numbers of 3D-Parity, and angular momentum.

 $\star \ k = 1, \ k = 2$

6. In Progress: D = 3 + 1

Effective charge for SU(3), D=3+1, $\beta = 6.0625$.

6. In Progress: D = 3 + 1

Preliminary results for the spectrum of SU(3), k = 1 and $a \simeq 0.1 fm$:

7. Appendix: Nambu-Goto States

The seven lowest (q = 0, 1, 2) NG energy levels for the w = 1 closed string

7. Appendix: k = 2 Spectrum for P = +, q = 0Group: $SU(4), \quad \beta = 50.00, \quad \underline{a} \simeq 0.06 fm$

7. Appendix: k = 2, P = +, q = 0

Group: SU(5), $\beta = 80.00$, $\underline{a} \simeq 0.06 fm$

7. Appendix: Antisymmetric Representation for P = +, q = 0Group: SU(5), $\beta = 80.00$, $\underline{a} \simeq 0.06 fm$

7. Appendix: Symmetric Representation for P = +, q = 0Group: SU(5), $\beta = 80.00$, $\underline{a} \simeq 0.06 fm$

