# Spectrum of closed $k$-strings in $\mathrm{D}=2+\mathbf{1}^{*}$ 

Andreas Athenodorou ${ }^{\dagger}$

Rudolf Peierls Center for Theoretical Physics<br>St John's College<br>University of Oxford

July 18th, 2008
The XXVI International Symposium on Lattice Field Theory Williamsburg, Virginia


* With Barak Bringoltz and Mike Teper


[^0]
## Overview

1. Introduction
2. Nambu-Goto Effective String Theory
3. Lattice Calculation
4. Results
5. Conclusions
6. In Progress: $D=3+1$

## 1. Introduction

$\diamond$ What effective string theory describes the confining flux-tube?
$\diamond$ If source transforms as $\psi(x) \longrightarrow z^{k} \psi(x), z \in Z_{N} \Longrightarrow k$-string.
$\diamond k$-strings

- AdS/CFT, MQCD. (Strassler, Armoni, Shiffman...)
- Hamiltonian approach. (Karabali, Nair, ...)
- Lattice.
$\diamond$ Recently:
$-k=1$ string (fundamental string) is very well approximated by Nambu-Goto (+moderate corrections).
- $k$-string ground state: in the same universality class as N.G.
$\diamond$ The excitation spectrum still remains unexplored:
$\longrightarrow k=2$ excitation spectrum.


## 2. Nambu-Goto Effective String Theory: Spectrum

## The Spectrum of the Nambu-Goto (NG) String Model

$\diamond$ Spectrum given by:

$$
E_{N_{L}, N_{R}, q, w}^{2}=(\sigma l w)^{2}+8 \pi \sigma\left(\frac{N_{L}+N_{R}}{2}-\frac{D-2}{24}\right)+\left(\frac{2 \pi q}{l}\right)^{2} .
$$

$\diamond$ Described by:

1. The winding number $w$.
2. The winding momentum $p_{\|}=2 \pi q / l$ with $q=0, \pm 1, \pm 2, \ldots$
3. $N_{L}=\sum_{k>0} \sum_{n_{L}(k)>0} n_{L}(k) k$ and $N_{R}=\sum_{k^{\prime}>0} \sum_{n_{R}\left(k^{\prime}\right)>0} n_{R}\left(k^{\prime}\right) k^{\prime}$ connected through the relation: $N_{R}-N_{L}=q w$.
$\diamond$ String states can be characterised by irreducible representations of $\mathbf{S O}(\mathbf{D}-2)$. In $2+1$ dimensions this can be translated to Parity with eigenvalues:

$$
P=(-1)^{\text {number of phonons }} .
$$

## 2. Nambu-Goto effective string theory: Corrections

$\diamond$ Lüscher\&Weisz(04) effective string action:
(Drummond '04, Dass and Matlock '06 for any D.)

$$
E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{1}{24}\right)-\frac{8 \pi^{2}}{\sigma l^{3}}\left(n-\frac{1}{24}\right)^{2}+\mathcal{O}\left(1 / l^{4}\right) .
$$

$\diamond$ Equivalently:

$$
E_{n}^{2}=(\sigma l)^{2}+8 \pi \sigma\left(n-\frac{1}{24}\right)+\mathcal{O}\left(1 / l^{3}\right) .
$$

$\diamond$ Fitting Ansatz:

$$
E_{\mathrm{fit}}^{2}=E_{N G}^{2}(q=0)-\sigma \frac{C_{p}}{(l \sqrt{\sigma})^{p}} \quad(p \geq 3)
$$

## 3. Lattice Calculation

$\diamond$ A lot of effort has been invested in: 3D, 4D cases of $Z_{2}, Z_{4}, U(1), S U(N \leq 8)$ (Caselle and collaborators, Gliozzi and collaborators, Kuti and collaborators, Lüscher\&Weisz, Majumdar and collaborators, Teper and collaborators, Meyer)
$\diamond$ We study closed flux tubes.
$\diamond$ Our approach:

- Create a large basis of operators ( $\sim 80-250$ ).
- Calculate the correlation matrix $\left.C_{i j, p, \pm}(t)=\left\langle\Phi_{i, p, \pm}^{\dagger}(t) \Phi_{j, p, \pm}(0)\right\rangle\right)$.
- Use the variational technique.
$\diamond$ We define our theory on a 3D Euclidean lattice with $L \times L_{\perp} \times L_{T}$ sites.
$\diamond$ Monte Carlo simulations for $N=4,5$ and $\beta=50.00$ and 80.00.


## 3. Lattice Calculation

$\diamond$ Operators: If $U$ is a Polyakov loop then:

- For $k=1, \phi \equiv \bigcirc \equiv \operatorname{Tr}\{U\}$
- For $k=2, \phi_{1} \equiv \bigcirc \equiv \operatorname{Tr}\left\{U^{2}\right\}, \phi_{2} \equiv \emptyset \equiv \operatorname{Tr}\{U\} \operatorname{Tr}\{U\}$
$\diamond$ Now, we are interested in excited states $\left(N_{R} \neq 0, N_{L} \neq 0, q \neq 0\right)$
$\diamond$ Example: operators with tranverse deformations for $P= \pm$ : $1^{\text {st }}: \phi=\operatorname{Tr}\{\square \square\}^{2} \pm \operatorname{Tr}\{\square \zeta\}^{2}$ $2^{\text {nd }}: \phi=\operatorname{Tr}\{\square \square \cdot \square \square\} \pm \operatorname{Tr}\{\square \square . \square \square\}$ $3^{\text {rd }}$ Additionally $(w=2)$ :
$\phi=\operatorname{Tr}\{\square\} \pm \operatorname{Tr}\{\square \square$



## 3. Lattice Calculation

$\diamond$ Projection onto the Antisymmetric representation:
$\phi=[\operatorname{Tr}\{$ $\qquad$
$\square$ $\}^{2}-\operatorname{Tr}\{$ $\qquad$ $\digamma$ $\qquad$ . $\square$ $\}] \pm\left[\operatorname{Tr}\{\square \square\}^{2}-\operatorname{Tr}\{\right.$ $\square$ $\downarrow$ $\square$ [ \}]
$\diamond$ Projection onto the Symmetric representation: $\phi=[\operatorname{Tr}$ $\qquad$ $\square$ $\qquad$ $\}^{2}+\operatorname{Tr}\{$ $\qquad$ $\square$ - $\qquad$ $\}] \pm\left[\operatorname{Tr}\left\{\square\lceil \}^{2}+\operatorname{Tr}\{\right.\right.$ $\square$
 .$\square \square$ \}]
$\diamond$ Polyakov lines $(\times 5$ blocking-smearing levels):


## 4. Results: Fundamental representation

Groups: $S U(3)$ and $S U(6), \quad \underline{a} \simeq 0.04 \mathrm{fm}$ and 0.08 fm .
Quantum Numbers: $P= \pm$ and $q=0$

4. Results: Antisymmetric Representation for $P=+, q=0$

Group: $S U(4), \quad \underline{\beta}=50.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$

4. Results: Symmetric Representation for $P=+, q=0$

Group: $\operatorname{SU}(4), \quad \underline{\beta}=50.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$

4. Results: Antisymmetric Representation, $q=1,2$ Projecting on the antisymmetric representation of $S U(4)$ :

4. Results: Antisymmetric Representation, $q=1,2$ Projecting onto the antisymmetric representation of $S U(5)$ :

4. Results: $k=2$ energy towers for $P=+, q=0, S U(4)$

Energy Towers for $P=+, q=0, S U(4)$




4. Results: Ground States for $P=+, q=0, S U(5)$

Fundamental


Antisymmetric


Symmetric


## 4. Results: Extra states



1. $w=2$ N.G states?
2. Massive states that cannot be accommodated in the N.G framework?

## 5. Conclusions

$\diamond$ Our $k=2$ spectrum falls into the symmetric and antisymmetric representations
$\Longrightarrow k$-strings know about the full gauge group and not just about its centre.
$\diamond k=2 A$ spectrum is clearly well described by Nambu-Goto.
$\diamond$ Qualitative difference between the $k=1$ and $k=2$ ground states.
$\diamond k=2$ spectrum is rich.

## 6. In Progress: $D=3+1$

$\diamond$ Interested in the more complicated case of $3+1$ dimensions. (calculations are under way).

* Described by more irreducible representations.
* Transverse deformations in two directions.

* Quantum numbers of 3D-Parity, and angular momentum.
* $k=1, k=2$


## 6. In Progress: $D=3+1$

Effective charge for $S U(3), \mathrm{D}=3+1, \beta=6.0625$.

6. In Progress: $D=3+1$

Preliminary results for the spectrum of $S U(3), k=1$ and $a \simeq 0.1 \mathrm{fm}$ :


## 7. Appendix: Nambu-Goto States

The seven lowest $(q=0,1,2)$ NG energy levels for the $w=1$ closed string

| 10 |
| :--- |
| 9 |

7. Appendix: $k=2$ Spectrum for $P=+, q=0$

Group: $S U(4), \quad \underline{\beta}=50.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$

7. Appendix: $k=2, P=+, q=0$

Group: $\operatorname{SU}(5), \quad \underline{\beta}=80.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$

7. Appendix: Antisymmetric Representation for $P=+, q=0$

Group: $S U(5), \quad \underline{\beta}=80.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$

7. Appendix: Symmetric Representation for $P=+, q=0$

Group: $S U(5), \quad \underline{\beta}=80.00, \quad \underline{a} \simeq 0.06 \mathrm{fm}$



[^0]:    $\dagger$ Speaker supported by the European Network: "Quest for Unification"

