Non-Standard Physics in (Semi)Leptonic Decays

Andreas S. Kronfeld

Lattice 2008, Williamsburg, July 14–19

based on (and complementing) Dobrescu & ASK, PRL **100,** 241802 (2008) [<u>arXiv:0803.0512</u> [hep-ph]]

1

Outline

- Conventional wisdom
- The f_{D_s} puzzle
- New physics: W', charged Higgs, leptoquarks
- Semileptonic decays
- Conclusions

Leptonic Decay

• The branching fraction for $D_s \rightarrow l\nu$ is

$$B(D_s \to \ell \nu) = \frac{m_{D_s} \tau_{D_s}}{8\pi} f_{D_s}^2 |G_F V_{cs}^* m_\ell|^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right)^2$$

where the decay constant f_{Ds} is defined by

 $\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}(p)\rangle=if_{D_{s}}p_{\mu}$

• Usually experiments quote f_{Ds} .

Semileptonic Decay

• The differential rate for $D \rightarrow K\mu\nu$ is

$$\frac{d\Gamma}{dq^2} = \frac{m_K^3 G_F^2 |V_{cs}|^2}{192\pi^2} \left[\mathbb{PS}_+ |f_+(q^2)|^2 + \frac{m_\mu^2}{m_K^2} \mathbb{PS}_0 |f_0(q^2)|^2 \right]$$

where the form factors are defined by $\langle K(k)|\bar{s}\gamma^{\mu}c|D(p)\rangle = (p+k)^{\mu}_{\perp}f_{+}(q^{2}) + q^{\mu}f_{0}(q^{2}),$ where $q \cdot (p+k)_{\perp} = 0.$

- Standard decay amplitudes are tree-level, *W*-mediated.
- Non-Standard amplitudes would have to be large to be noticeable.
- Non-Standard models are popular only if they are predictive, hence constrained.
- New physics is implausible, so hlv are used to determine CKM, and lv to test latQCD.

(By the way,

process	measures	CKM how?	comment
$\pi \rightarrow l\nu$ $l = e, \mu$	$ V_{ud} f_{\pi}$	nuclear β $0^+ \rightarrow 0^+$	Anyone here understand it?
$K \rightarrow l\nu$ $l = e, \mu$	$ V_{us} f_K$	$K \rightarrow \pi l \nu$	Hence, $f_K/f_+(0)$.
$D \rightarrow \mu \nu$	$ V_{cd} f_D$	CKM unitarity	Hence $ V_{us} $.
$D_s \rightarrow l\nu$ $l = \mu, \tau$	$ V_{cs} f_{Ds}$	CKM unitarity	Hence $ V_{us} \& V_{ud} .$
$B \rightarrow \tau \nu$	$ V_{ub} f_B$	$b \rightarrow u l \nu$ $B \rightarrow \pi l \nu$	Which V _{ub} ?

one of our acid tests relies on nuclear physics.)

(By the way,

process	measures	CKM how?	comment
$\pi \rightarrow l\nu$ $l = e, \mu$	$ V_{ud} f_{\pi}$	nuclear β $0^+ \rightarrow 0^+$	Anyone here understand it?
$K \longrightarrow l\nu$ $l = e, \mu$	$ V_{us} f_K$	$K \rightarrow \pi l \nu$	Hence, $f_K/f_+(0)$.
$D \rightarrow \mu \nu$	$ V_{cd} f_D$	CKM unitarity	Hence $ V_{us} $.
$D_s \rightarrow l\nu$ $l = \mu, \tau$	$ V_{cs} f_{Ds}$	CKM unitarity	Hence $ V_{us} \& V_{ud} .$
$B \rightarrow \tau \nu$	$ V_{ub} f_B$	$b \rightarrow u l \nu$ $B \rightarrow \pi l \nu$	Which V _{ub} ?

one of our acid tests relies on nuclear physics.)

But something funny happened ...

a 3.8 σ discrepancy, or 2.7 $\sigma \oplus 2.9\sigma$.

With CLEO's (our) update from FPCP (Lat08)...

a 3.5 σ discrepancy, or 2.9 $\sigma \oplus 2.2\sigma$.

Experiments

- Measurements by BaBar, CLEO, Belle do not depend on models* for interpretation of the central value or the error bar.
- CLEO and Belle have absolute $B(D_s \rightarrow l\nu)$.
- Hard to see a misunderstood systematic.
- Could all fluctuate high?
- * except the Standard Model!

CKM

- Experiments take $|V_{cs}|$ from 3-generation unitarity, either with PDG's global CKM fit or setting $|V_{cs}| = |V_{ud}|$. No difference.
- Even *n*-generation CKM requires $|V_{cs}| < 1$; would need $|V_{cs}| > 1.1$ to explain effect.
- (Note that from $D \rightarrow Kl\nu$, $|V_{cs}| > 1$.)

Radiative Corrections

- Fermi constant from muon decay, so its radiative corrections implicit in $\mu\nu$ and $\tau\nu$.
- Standard treatment [Marciano & Sirlin] has a cutoff, set (for f_{π}) to m_{ρ} . Only I-2%.
- More interesting is $D_s \rightarrow D_s^* \gamma \rightarrow \mu \nu \gamma$, which is *not* helicity suppressed. Applying CLEO's cut 1% for $\mu \nu$ [Burdman, Goldman, Wyler].
- Only 9.3 MeV kinetic energy in $D_s \rightarrow \tau \nu$.

Elements of HPQCD

- Staggered valence quarks
 - HISQ (highly improved staggered quark) action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - absolutely normalization from PCAC;
 - less taste breaking;
 - tiny statistical errors: 0.5% on f_{Ds} .

- 2+1 rooted staggered sea quarks:
 - Lüscher-Weisz gluon + asqtad action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - discretization errors cause small violations of unitarity, controllable by chiral perturbation theory.
- Combined fit to a^2 , m_{sea} , m_{val} dependence: not fully documented, but irrelevant for f_{Ds} .

As the lattice gets finer, the discrepancy grows:

If m_c (set from η_c) were retuned to flatten this, f_{Ds} (at $a \neq 0$) would not change much.

Error Budget

 $\Delta_q = 2m_{Dq} - m_{\eta c}$

	f_K/f_{π}	f_K	f_{π}	f_{D_s}/f_D	f_{D_s}	f_D	Δ_s/Δ_d
r_1 uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_s evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d , QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

charmed sea $\ll 1\%$?

Other Results

what	expt	HPQCD	
$m_{J/\psi}-m_{\eta c}$	118.1	111 ± 5‡	MeV
m_{Dd}	1869	1868 ± 7	MeV
m_{Ds}	1968	1962 ± 6	MeV
Δ_s/Δ_d	1.260 ± 0.002	1.252 ± 0.015	
f_{π}	I 30.7 ± 0.4	132 ± 2	MeV
f_K	159.8 ± 0.5	157 ± 2	MeV
f_D	$206.7 \pm 8.9^*$	207 ± 4	MeV

*CLEO @ FPCP [‡]annihilation corrected

What if

- ... the discrepancy is real?
- Then it must be non-Standard physics.
- How wacky would a non-Standard model be?
- It turns out particles that are already being considered can do the trick.

Effective Lagrangian

• The new particles will be heavy. Write

$$\mathcal{L}_{eff} = M^{-2} C_A^l (\bar{s} \gamma^{\mu} \gamma_5 c) (\bar{v}_L \gamma_{\mu} l_L) + M^{-2} C_P^l (\bar{s} \gamma_5 c) (\bar{v}_L l_R) - M^{-2} C_V^l (\bar{s} \gamma^{\mu} c) (\bar{v}_L \gamma_{\mu} l_L) + M^{-2} C_S^l (\bar{s} c) (\bar{v}_L l_R) + M^{-2} C_T^l (\bar{s} \sigma^{\mu\nu} c) (\bar{v}_L \sigma_{\mu\nu} l_R)$$

with left-handed neutrinos only.

• First two: leptonic; last three: semileptonic.

- Because V_{cs} has a small imaginary part (in PDG parametrization), one of C_A , C_P must be real and positive, to explain the effect.
- To reduce each effect to 1σ ,

$$\frac{M}{(\operatorname{Re} C_A^{\ell})^{1/2}} \lesssim \begin{cases} 710 \text{ GeV for } \ell = \tau \\ 850 \text{ GeV for } \ell = \mu \end{cases},$$
$$\frac{M}{(\operatorname{Re} C_P^{\ell})^{1/2}} \lesssim \begin{cases} 920 \text{ GeV for } \ell = \tau \\ 4500 \text{ GeV for } \ell = \mu \end{cases}.$$

New Particles

 The effective interactions can be induced by heavy particles of charge +1, +2/3, -1/3.

• Charged Higgs, new W'; leptoquarks.

Leptonic Decay

• In the amplitude, replace

$$G_F V_{cs}^* m_l \to G_F V_{cs}^* m_l + \frac{1}{\sqrt{2}M^2} \left(C_A^l m_l + \frac{C_P^l m_{D_s}^2}{m_c + m_s} \right)$$

so C_A can be l independent and still cause the same shift in both modes.

W'

- Contributes only to C_A and C_V .
- New gauge symmetry, but couplings to lefthanded leptons constrained by other data.
- If W and W' mix, electroweak data imply it's too weak to affect $D_s \rightarrow l\nu$.
- Seems unlikely, barring contrived, finely tuned scenarios.

Charged Higgs

• Multi-Higgs models include Yukawa terms $y_c \bar{c}_R s_L H^+ + y_s \bar{c}_L s_R H^+ + y_\ell \bar{\mathbf{v}}_L^\ell \ell_R H^+ + \text{H.c.},$ (mass-eigenstate basis) leading to

$$C_{P,S}^{\ell} = \frac{1}{2} (y_c^* \mp y_s^*) y_{\ell}, \qquad M = M_{H^{\pm}}$$
$$\propto V_{cs}^* (m_c \mp m_s \tan^2 \beta) m_{\ell} \quad \text{in Model I}$$

• Note that $C_{P,S}$ can have either sign.

- But consider a two-Higgs-doublet model
 - one for *c*, *u*, *l*, with VEV 2 GeV or so;
 - other for d, s, b, t, with VEV 245 GeV.
- No FCNC; CKM suppression.
- Need to look at one-loop FCNCs.
- Naturally has same-sized increase for μ & τ .

• This model predicts a similarly-sized deviation in $D \rightarrow lv$, so it is now disfavored:

Leptoquarks

- Color triplet, scalar doublet with Y = +7/6 has a component with charge Q = +2/3.
- Dobrescu and Fox use this in a new theory of fermion masses [arXiv:0805.0822].
- Leads to $C_A = C_V = 0$, $C_P = C_S = 4C_T$ of any phase, and no connection between μ & τ .
- LFV $\tau \rightarrow \mu s \bar{s}$ disfavors this.

• LFV $\tau \rightarrow \mu s \bar{s}$ disfavors any leptoquark with a charge +2/3 component:

•
$$J = I, (3, 3, +2/3)$$
 and $(3, I, +2/3)$

• Way out: two leptoquarks, little mixing.

• But J = 0, (3, 1, -1/3) seems promising: $\kappa_{\ell}(\bar{c}_L \ell_L^c - \bar{s}_L \nu_L^{\ell c})\tilde{d} + \kappa'_{\ell} \bar{c}_R \ell_R^c \tilde{d} + \text{H.c.}$

(an interaction in R-violating SUSY), with

$$C_A^{\ell} = C_V^{\ell} = \frac{1}{4} |\kappa_{\ell}|^2$$
$$C_P^{\ell} = C_S^{\ell} = \frac{1}{4} \kappa_{\ell} \kappa_{\ell}^{\prime *} = -2C_T^{\ell}$$

• If $|\kappa'_{\ell}/\kappa_{\ell}| \ll m_{\ell}m_c/m_{D_s}^2$, then automatically the interference is constructive and creates the same per-cent deviation for $\mu\nu$ and $\tau\nu$.

Semileptonic Decay

$$\frac{d\Gamma}{dq^2} = \frac{m_D^3}{192\pi^2} \left\{ \mathbb{P}S_{++} |f_+(q^2)|^2 \left| G_F V_{cs} + \frac{C_V}{\sqrt{2}M^2} \right|^2 \right\}$$

$$+ \mathbb{PS}_{00}|f_{0}(q^{2})|^{2} \left| \frac{m_{\mu}}{m_{D}} \left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) + \frac{q^{2}}{m_{D}(m_{c} - m_{s})} \frac{C_{s}}{\sqrt{2}M^{2}} \right|^{2} \\ - \mathbb{PS}_{T+}B_{T}(q^{2})f_{+}(q^{2})\frac{m_{\mu}}{4m_{D}}\operatorname{Re}\left[\left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) \frac{C_{T}^{*}}{\sqrt{2}M^{2}} \right] \\ - \mathbb{PS}_{T0}B_{T}(q^{2})f_{0}(q^{2})\frac{m_{\mu}}{4m_{D}}\operatorname{Re}\left[\left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) \frac{C_{T}^{*}}{\sqrt{2}M^{2}} \right] \right\}$$

• C_V causes an effect comparable to $l\nu$, but C_S and C_T could hide: $m_\mu/m_D = 0.057$

- Effective couplings in semileptonic and leptonic decays are related.
- Enhancement in $D \rightarrow K\mu\nu$ favors model w/ naturally same-sized effects in $D_s \rightarrow \mu\nu, \tau\nu$.
- SM rate for $D \rightarrow K\mu\nu$ favors shift via C_P , with C_S , C_T shift hiding.
- For leptoquarks implies the Yukawa matrix is "just so".

- Leptoquarks come with Yukawa matrices:
 - no relation between c and b couplings;
 - aesthetically unappealing.
- If a signal is real, aesthetics are a secondary problem.
- If 1st generation coupling are small, these leptoquarks evade Tevatron bounds.

LHC

- The generic bounds on mass/coupling suggest that any non-Standard explanation of the effect is observable at the LHC.
- Charged Higgs: similar to usual search.
- Leptoquarks: $gg \rightarrow \tilde{d}\bar{d}\bar{d} \rightarrow \ell_1^+ \ell_2^- j_c j_c$.

Perspective

- The f_{Ds} puzzle is intriguing.
- More calculations of f_{Ds} needed—
 - with $n_f = 2 + 1$ or 2 + 1 + 1.
- Better (and more) calculations of $D \rightarrow K \mu v$ form factors needed, including tensor.