Epsilon regime calculations with reweighted clover fermions

Anna Hasenfratz

University of Colorado In collaboration with

Roland Hoffmann and Stefan Schaefer Lattice 2008

arXiv:0805.2369 arXiv:0806.4586

Dynamical simulations with light quarks are (still) difficult:

- Expensive
- Large autocorrelation
- Stability problems with Wilson-type fermions
- Configurations with small eigenmodes give the largest contribution to correlators, yet they are infrequently sampled

Reweighting in the quark mass can help

Reweighting in the quark mass Generate configurations with mass m_1 and reweight it to $m_2 < m_1$ by assigning a weight factor

$$w_i \propto \det rac{\mathrm{D}_2^\dagger[\mathrm{U_i}]\mathrm{D}_2[\mathrm{U_i}]}{\mathrm{D}_1^\dagger[\mathrm{U_i}]\mathrm{D}_1[\mathrm{U_i}]} = e^{-\Delta S_f}$$

to each congfiguration. Calculate expectation values as

$$\langle O
angle_2 = rac{\sum_i w_i O[U_i]}{\sum_i w_i}$$

Reweighting helps as the heavy mass controls

- Computational expense
- Autocorrelation
- Algorithmic stability
- Largest contributions to the correlators are over-sampled and reweighted

General belief: Reweighting cannot work

- $w \propto e^{-\Delta S}, \, \Delta S \propto \text{Volume}$
- not enough overlap between generated and desired configurations
- weight is difficult to calculate

Reweighting works in a wide mass range and volumes

- Only the fluctuations of ΔS matter $\delta(\Delta S) \sim V^{\alpha}$ and α is small
- Most of the UV fluctuations can be absorbed by a pure gauge action term
- $\Delta S \propto (m_1 m_2)$: reweight at small masses
- There is an inverse correlation between correlators and weights
- Calculating the weight stochastically is fast and does not introduce systematic errors

Stochastic estimator

$$w \propto \det A = \langle e^{-\xi^{\dagger}(A-1)\xi} \rangle_{\xi}$$

Take $\langle ... \rangle_{\xi}$ together with configuration average \longrightarrow no systematic error from the weight factor

To reduce statistical fluctuations of w

- \star separate low eigenmodes
- \star determinant breakup
- \star UV subtraction (absorb as pure gauge term in action)

Cost: $\approx 30-40 \ D^{-1}$ per 5MeV reduction in quark mass

Examples of reweighted ensembles: Original simulations: $n_f = 2$ flavor nHYP smeared tree level improved Wilson fermions with $a \sim 0.12$ fm

- 16^4 , $La\sim 1.85 {\rm fm},\,m_q=20 {\rm MeV} \rightarrow 5 {\rm MeV}$
- 24^4 , $La\sim 2.7{
 m fm},\,m_q=8{
 m MeV}
 ightarrow 4{
 m MeV}$
- $16^3 \times 32$, $La \sim 2.0 {
 m fm}, m_q = 30 {
 m MeV} \rightarrow 5 {
 m MeV}$

Any in-between quark mass is automatically available The lowest possible quark mass is limited by the spread of the Dirac operator eigenmodes

Reweighting:

Distribution of the Hermitian gap

Lowest eigenmode on original (20 MeV) and lightest reweighted (5MeV) ensembles

Configurations with small eigenmodes are suppressed

The scalar correlator

sea quarks: 20MeV valence quarks: 10MeV

- Reweighted correlator stays positive
- Statistical errors are reduced wrt partial quenched

Epsilon regime with Wilson fermions finite volume region requires

• light quarks :
$$m_{\pi}L \ll 1$$

• large volume : $FL \gg 1$

 $m\Sigma V = \mathcal{O}(1)$

At NLO- χ PT the 2-point functions are parabolic in time depend only on Σ and F. The other low energy constants enter only at the next order.

• Pseudo scalar correlator

$$G_{PP} = \Sigma^2 \Big(a_p + rac{b_P}{(FL)^2} h_1(t/L) + \mathcal{O}(rac{1}{(FL)^4}) \Big)$$

• Axial vector correlator

$$G_{AA} = \frac{F^2}{V} \left(a_A + \frac{b_A}{(FL)^2} h_1(t/L) + \mathcal{O}(\frac{1}{(FL)^4}) \right)$$

• The expansion is in terms of $1/(FL)^2$ $F = 86 \text{MeV}, \ L = 1.85 \text{ fm} \longrightarrow 1/(FL)^2 \sim 1.6$ $F = 86 \text{MeV}, \ L = 2.70 \text{ fm} \longrightarrow 1/(FL)^2 \sim 0.7$

Parameters of the simulations

κ	$\kappa_{ m rew}$	L	$N_{ m conf}$	$am_{ m PCAC}$	$m[{ m MeV}]$
0.1278	0.1278	16	180	0.0117(3)	22
	0.1279	16	180	0.0088(5)	16.5
	0.1280	16	180	0.0058(7)	11
	0.12805	16	180	0.0047(8)	9
	0.1281	16	180	0.0028(11)	5
0.12805	0.12805	24	154	0.0044(3)	8.5
	0.12810	24	154	0.0030(3)	5.8
	0.128125	24	154	0.0024(3)	4.2
	0.12815	24	154	0.0019(4)	3.8

Is $m_{\pi}L$ small enough for ϵ - regime?

Result for the low energy constants (MS at 2GeV)

(using $r_0 = 0.49$ fm and RI-MOM $Z_A = 0.99$, $Z_P = 0.9$) Observable finite volume effects for F; Σ is stable.

Summary

- Reweighting in the quark mass is an effective method to reach small quark masses with Wilson fermions
 - Avoids long autocorrelation
 - Improves importance sampling
 - Stable algorithm
 - In most cases statistics is improved wrt partial quenched studies
- epsilon regime is within reach even on large volumes $F = 90(4) \text{ MeV}, \Sigma^{1/3} = 248(6) \text{MeV}$
- We find similar behavior in p-regime calculations as well

