The	Problem	Simulation	Results	Scale Determination	Conclusion
	On Sca	le Determi	nation in	Lattice QCD wi	th
		Dyna	mical Qua	arks	

Asit K. De, A. Harindranath and Jyotirmoy Maiti

Theory Group, Saha Institute

Lattice 2008, July 14, 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Problem	Simulation	Results	Scale Determination	Conclusion
Outline				

5 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The F	Problem	Simulation	Results	Scale Determination	Conclusion
	The Probl	em			
	Simulation Sommer p	harameter r_c/a	a depends or	amical quarks snow: n sea quark mass <i>am_c</i>	,
	The Quest	tions are			
	Is thisHow i	a cut-off effe s the lattice s	ct or a physic cale to be de	cal effect? termined?	
	• S m	hould the scale hass <i>m_q</i> ?	e a be taken a	s dependent on the qua	rk
	d	o chiral extrapo	plations of had	Ironic quantities like ma	sses?
		NO theore	etical under	standing yet !	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

- Standard HMC updating so far (DDHMC runs in progress)
- 5000 trajectories at each sea quark mass
- Gaussian smearing at both mesonic source and sink, highly optimized, arXiv:0712.4354 [hep-lat]
- APE smearing used to extract static potential from < W >
- All errors shown are single-omission JK errors from 200 independent configurations at each quark mass

The F	Problem	Simulation	Results	Scale Determination	Conclusion
	Analysi	s of < <i>W</i> (<i>R</i> , <i>T</i>)	>		
	 Smooth Smooth Smo	earing level up the coefficient of	to 40 with ε = the staples	= 2.5 where <i>c</i> /4 = 1/	(ε+4)
	• < 1/	V(R,T) > meas	sured up to 7	$T = 16$ and $R = 8\sqrt{3}$	
	 Rea bety 	asonable platea ween $T = 3$ and	u obtained ir I $T = 5$	effective potential p	lots
	 State betv 	tic potential V(F ween [<i>T_{min}, T_{max}</i>	R) extracted f $x_{x} = [3, 4], [3]$	rom single exponenti 5], [4,5]	al fits
		< W(R, 7	$\overline{C}) >= C(R) \epsilon$	xp[-aV(R)T]	
	• Opt by c of F	imum smearing observing the gi	level detern ound state c	nined at a given quar verlap <i>C(R</i>) as a fur	k mass action

Scale Determination

$\beta = 5.6, \ \kappa = 0.15775 \ (am_q \approx 0.02)$

Results

Scale Determination

Conclusion

The Problem

Simulation

Simulation

Results

Scale Determination

- the difference

 ([1/R] 1/R) is never negligible on a finite lattice
- α is expected to run with
 R at these intermediate length scales
- can only estimate an average α over the values of *R* where the static potential is fit
- perturbative running is generally applicable at scales ≥ 2 GeV which translates into R ≤ 1 in our case

 $eta = 5.6, \ \kappa = 0.1575$ ($am_q \approx 0.03$)

 $\beta = 5.6$

 $\beta = 5.6$

200

From the numerical results on α , $a\sigma^{1/2}$ and a/r_c in dependence of am_q , at fixed β , we conclude:

- The dimensionless parameter α does NOT significantly depend on am_q for small enough am_q (≤ 0.035)
- Scaling violations (= cutoff effects) are negligible for small enough am_q
- $a\sigma^{1/2}$ is linear in am_q for small enough am_q :

 $a\sigma^{1/2} = C_1 + C_2 a m_q$

a/r_c is linear in am_q for small enough am_q:

$$a/r_c = A_c + B_c a m_q$$

• The qualitative content of the above conclusions does NOT change with any sensible change of the parameters of the analysis like *T_{min}*, *T_{max}*, *R_{min}*, *R_{max}* and the smearing level

 $\beta = 5.6$

0.06

0.04

am

0.02

The Problem Simulation Results Scale Determination Conclusion

$\beta = 5.6$

- *a*/*r_c* is relatively independent of the choice of *R_{min}*
- For our final analysis, we settled for APE smearing level = 30 (for the lightest 3 quark masses) and 25 for the rest of the quark masses $[T_{min}, T_{max}] = [3, 4]$ $[R_{min}, R_{max}] = [\sqrt{2}, 3\sqrt{5}]$

The	Problem	Simulation	Results	Scale Determination	Conclusior
	We inter	pret our result	s at fixed β		
	for small • α in • $a\sigma^{1}$ • a/r_c	$am_q \lesssim 0.035$: dependent of $d^{/2} = C_1 + C_2 ar$ $dependent = A_c + B_c am_c$	am _q n _q		
	to be a p	hysical depe	ndence of $\sigma^{1/2}$	² and $1/r_c$ on m_q :	
	• $\sigma^{1/2}$ • $1/r_c$	$c^2 = \mathscr{C}_1 + C_2 m_q$ $c_2 = \mathscr{A}_c + B_c m_q$	with $C_1 = a \mathscr{C}_1$ with $A_c = a \mathscr{A}_c$		

In other words, for data points with small enough am_q , at fixed β , the scale is taken to be the same for all quark masses \Rightarrow a mass-independent scheme and a valid linear chiral extrapolation of a/r_c and $a\sigma^{1/2}$ in the small am_q region

The Problem Simulation Results Scale Determination Conclusion For chiral extrapolation of a/r_c to the physical point, use dependence on $(am_{\pi})^2$, instead of $(r_c m_{\pi})^2$ or $(m_{\pi}/m_{\rho})^2$: $a/r_c = P_c + Q_c (am_{\pi})^2$ Obtain the scale *a* by solving the quadratic equation in *a*: $\frac{a}{r_c^{\text{Ph}}} = P_c + Q_c (am_{\pi}^{\text{Ph}})^2$

where $r_c^{\rm Ph}$ and $am_{\pi}^{\rm Ph}$ are the physical values in physical units

Check chiral limits with am_q and $(am_\pi)^2$ extrapolations:

		Chiral lin	nit of a/r_0	
Extrapolation	am_{π} from PP		am_{π} from AA	
	am _q ^{AA}	am ^{AP}	am _q ^AA	am_q^P
am _q	0.1616(13)	0.1627(10)	0.1620(13)	0.1618(12)
$(am_{\pi})^2$ 0.1631		1(16)	0.163	2(16)

The Problem	Simulation	Results	Scale Determination	Conclusion

The scale *a* and a^{-1}

	am_{π} from PP		am_{π} from AA	
	a (fm)	a ⁻¹ (GeV)	a (fm)	a ⁻¹ (GeV)
a/r_0 fit	0.08027(77)	2.458(23)	0.08032(76)	2.457(23)
a∕r₁ fit	0.08053(70)	2.450(21)	0.08053(71)	2.450(22)

Contrast that with our own fully hadronic scale determination from linear dependence of am_{ρ} on $(am_{\pi})^2$: $am_{\rho} = F_1 + F_2(am_{\pi})^2$

Concluding Remarks

The Problem

- All lattice actions (including all improved gauge and fermion actions) have shown the Sommer parameter in lattice units (*r_c/a*) depends on the sea quark mass in lattice units (*am_q*)
- All of this dependence then cannot be a scaling violation (positive power of the scale *a*). It must partly be a physical effect (see McNeile and Bernard et al, Lattice 2007)
- How to get rid of the scale-violating part?

Our simulation

 Our approach was to take Wilson action with 𝒪(a) effects and investigate the quark mass dependence at as many small enough quark masses as possible (8 values ~ 0.014 to 0.07) at a small enough lattice spacing (0.08 fm)

The Problem	Simulation	Results	Scale Determination	Conclusion

Importance of α

 Essential to determine α, the coeff of the 1/R term as carefully as possible. Its behavior with respect to changes of smearing level and R_{min} should come out as expected.

Our Interpretation

- The dimensionless α being independent of am_q for small am_q is interpreted as a signal for getting rid of the scale-violating region.
- For the same range of am_q , $a\sigma^{1/2}$ and a/r_c are both linear in am_q . This is interpreted as physical linear m_q dependence of $\sigma^{1/2}$ and $1/r_c$, all in physical units.
- For our β (=5.6), this region of quark mass is approximately m_q < 85 MeV

The Problem	Simulation	Results	Scale Determination	Conclusion

Chiral Extrapolation

- With the basic premises set, accurate chiral extrapolation needed to determine the lattice scale
 - Have used $(am_{\pi})^2$ for extrapolation to the physical point
 - Only linear extrapolation in $(am_{\pi})^2$ is done only for small masses (generally consistent with $am_q < 0.035$). Larger masses show deviation from linear behavior and in our experience these are scaling violations and should NOT be included in the fit.
 - Have checked the chiral limit with am_q extrapolation
 - Extrapolations with (r_cm_π)² and (m_π/m_ρ)² are better avoided. Introduce uncertainty and inaccuracy.
 - The whole procedure is testable with larger volumes and smaller quark masses (simulations underway with DDHMC)