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The Problem
Simulations of Lattice QCD with dynamical quarks show:

Sommer parameter rc/a depends on sea quark mass amq

The Questions are

Is this a cut-off effect or a physical effect?
How is the lattice scale to be determined?

Should the scale a be taken as dependent on the quark
mass mq?
Since the quark mass is a scale-dependent quantity, how to
do chiral extrapolations of hadronic quantities like masses?

NO theoretical understanding yet !
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Our Simulation
Wilson (unimproved) gauge and fermion actions ( O(a)
cutoff effects)
NF = 2 degenerate sea quarks
β = 6/g2 = 5.6, 16332 lattice
8 values of sea quark masses, amq ≈ 0.07 − 0.014

Standard HMC updating so far (DDHMC runs in progress)
5000 trajectories at each sea quark mass
Gaussian smearing at both mesonic source and sink,
highly optimized, arXiv:0712.4354 [hep-lat]
APE smearing used to extract static potential from < W >

All errors shown are single-omission JK errors from 200
independent configurations at each quark mass



The Problem Simulation Results Scale Determination Conclusion

Analysis of < W (R,T ) >

Smearing level up to 40 with ε = 2.5 where c/4 = 1/(ε +4)
is the coefficient of the staples

< W (R,T ) > measured up to T = 16 and R = 8
√

3

Reasonable plateau obtained in effective potential plots
between T = 3 and T = 5

Static potential V(R) extracted from single exponential fits
between [Tmin,Tmax ] = [3,4], [3,5], [4,5]

< W (R,T ) >= C(R)exp [−aV (R)T ]

Optimum smearing level determined at a given quark mass
by observing the ground state overlap C(R) as a function
of R
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β = 5.6, κ = 0.15775 (amq ≈ 0.02)
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Analysis of aV (R)

At each β and quark mass, the static potential obtained is
analyzed with the following parameterization:

aV (R) = aV0 +a2
σR− α

R
−δROT

([
1
R

]
− 1

R

)
where δROT is the coeff of the lattice correction term with[

1
R

]
=

4π

L3 ∑
qi 6=0

cos(aqi ·R)

4sin2(aqi/2)

being the lattice fourier transform of the gluon propagator.

The first 3 terms of aV (R) above is differentiated to obtain the
Sommer parameter: a/rc = 1/Rc = aσ1/2/

√
(Nc−α)
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β = 5.6, κ = 0.1575 (amq ≈ 0.03)
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([1/R]−1/R) is never
negligible on a finite
lattice
α is expected to run with
R at these intermediate
length scales
can only estimate an
average α over the
values of R where the
static potential is fit
perturbative running is
generally applicable at
scales & 2 GeV which
translates into R . 1 in
our case
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β = 5.6
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From the numerical results on α, aσ1/2 and a/rc in
dependence of amq, at fixed β , we conclude:

The dimensionless parameter α does NOT significantly
depend on amq for small enough amq (. 0.035)
Scaling violations (= cutoff effects) are negligible for small
enough amq

aσ1/2 is linear in amq for small enough amq:

aσ
1/2 = C1 +C2amq

a/rc is linear in amq for small enough amq:

a/rc = Ac +Bcamq

The qualitative content of the above conclusions does NOT
change with any sensible change of the parameters of the
analysis like Tmin, Tmax , Rmin, Rmax and the smearing level
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Check with a different
Rmin = 2.0
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β = 5.6

a/rc is relatively
independent of the
choice of Rmin

For our final analysis, we
settled for
APE smearing level = 30
(for the lightest 3 quark
masses) and 25 for the
rest of the quark masses
[Tmin,Tmax ] = [3,4]
[Rmin,Rmax ] = [

√
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We interpret our results at fixed β

for small amq . 0.035:
α independent of amq

aσ1/2 = C1 +C2amq

a/rc = Ac +Bcamq

to be a physical dependence of σ1/2 and 1/rc on mq:

σ1/2 = C1 +C2mq with C1 = aC1

1/rc = Ac +Bcmq with Ac = aAc

In other words, for data points with small enough amq, at fixed
β , the scale is taken to be the same for all quark masses⇒
a mass-independent scheme and a valid linear chiral
extrapolation of a/rc and aσ1/2 in the small amq region
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For chiral extrapolation of a/rc to the physical point, use
dependence on (amπ)2, instead of (rcmπ)2 or (mπ/mρ)2:
a/rc = Pc +Qc(amπ)2

Obtain the scale a by solving the quadratic equation in a:

a
rPh
c

= Pc +Qc(amPh
π )2

where rPh
c and amPh

π are the physical values in physical units

Check chiral limits with amq and (amπ)2 extrapolations:

Chiral limit of a/r0
Extrapolation amπ from PP amπ from AA

amAA
q amAP

q amAA
q amAP

q
amq 0.1616(13) 0.1627(10) 0.1620(13) 0.1618(12)

(amπ)2 0.1631(16) 0.1632(16)
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Our fit (right) drops the
lowest (amπ)2 points for FS
effects and also drops some
of the largest mass points for
possible scaling violation

Below is shown a similar plot
from CPPACS (2002)
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The scale a and a−1

amπ from PP amπ from AA
a (fm) a−1 (GeV) a (fm) a−1 (GeV)

a/r0 fit 0.08027(77) 2.458(23) 0.08032(76) 2.457(23)
a/r1 fit 0.08053(70) 2.450(21) 0.08053(71) 2.450(22)

Contrast that with our own fully hadronic scale determination from
linear dependence of amρ on (amπ)2: amρ = F1 +F2(amπ)2

amρ fit 0.07932(135) 2.488(41) 0.07995(195) 2.468(60)
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Concluding Remarks
The Problem

All lattice actions (including all improved gauge and
fermion actions) have shown the Sommer parameter in
lattice units (rc/a) depends on the sea quark mass in
lattice units (amq)
All of this dependence then cannot be a scaling violation
(positive power of the scale a). It must partly be a physical
effect (see McNeile and Bernard et al, Lattice 2007)
How to get rid of the scale-violating part?

Our simulation
Our approach was to take Wilson action with O(a) effects
and investigate the quark mass dependence at as many
small enough quark masses as possible (8 values ∼ 0.014
to 0.07) at a small enough lattice spacing (0.08 fm)
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Importance of α

Essential to determine α, the coeff of the 1/R term as
carefully as possible. Its behavior with respect to changes
of smearing level and Rmin should come out as expected.

Our Interpretation
The dimensionless α being independent of amq for small
amq is interpreted as a signal for getting rid of the
scale-violating region.
For the same range of amq, aσ1/2 and a/rc are both linear
in amq. This is interpreted as physical linear mq
dependence of σ1/2 and 1/rC , all in physical units.
For our β (=5.6), this region of quark mass is
approximately mq < 85 MeV
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Chiral Extrapolation
With the basic premises set, accurate chiral extrapolation
needed to determine the lattice scale

Have used (amπ)2 for extrapolation to the physical point
Only linear extrapolation in (amπ)2 is done only for small
masses (generally consistent with amq < 0.035). Larger
masses show deviation from linear behavior and in our
experience these are scaling violations and should NOT be
included in the fit.
Have checked the chiral limit with amq extrapolation
Extrapolations with (rcmπ)2 and (mπ/mρ)2 are better
avoided. Introduce uncertainty and inaccuracy.
The whole procedure is testable with larger volumes and
smaller quark masses (simulations underway with DDHMC)
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