Nonperturbative infrared fixed point in sextet QCD

B. Svetitsky Tel Aviv University

with Y. Shamir and T. DeGrand

(YS, BS, & TD, arXiv:0803.1707 [hep-lat])

- 1. Motivation: Beyond the Standard Model more gauge groups, more reps
 - β function scenarios
- 2. Method: Schrödinger Functional (background field method)
- 3. First Results -

The β function of the SU(3) gauge theory with $N_f = 2$ fermions in the 6 rep

4. Stay for the next talk

MOTIVATION: Beyond the Standard Model

(A. Nelson, Lattice 2006)

Strong coupling gauge theories:

- Strongly coupled Weinberg–Salam
- Technicolor the Higgs as a bound state; walking
- Extra dimensions

Unified theories:

- Larger gauge groups
- Tumbling
- Multiple gauge groups, alignment
- Supersymmetry

Why this model?

- Banks-Zaks fixed point (Caswell 1974; Banks & Zaks 1981) Is it really there?
- Scale separation: $C_2(R) = \frac{10}{3}$ vs. $\frac{4}{3}$ for fund rep (T. DeGrand, following talk)

Why this model?

- Banks-Zaks fixed point (Caswell 1974; Banks & Zaks 1981) Is it really there?
- Scale separation: $C_2(R) = \frac{10}{3}$ vs. $\frac{4}{3}$ for fund rep (T. DeGrand, following talk)

Banks–Zaks: Perturbation theory

$$\beta(g^2) = -\frac{b_1}{16\pi^2}g^4 - \frac{b_2}{(16\pi^2)^2}g^6 + \cdots$$

Here $b_1 > 0$, $b_2 < 0$ [as in QCD with $8.05 < N_f < 16\frac{1}{2}$]

 \implies IR-attractive fixed point at $g_*^2 \simeq 10.4$ — a strong coupling

What can happen NONPERTURBATIVELY?

GAUGE GROUPS, REPs, and N_f

(Dietrich & Sannino, PRD 2007)

Ladder approx, Bethe-Salpeter, etc. \implies $(N = 3, REP=SYM=6, N_f = 2)$ — lies below conformal window

CALCULATING THE β FUNCTION: the Schrödinger Functional

- Wilson fermions because
 - 1. boundary values (background field) can be set on a single time slice
 - 2. control over N_f
 - + clover term \Rightarrow removes tree-level O(a) discretization errors
 - + tadpole improvement \Rightarrow reduces leading $O(g^2a)$ errors (known to be large)
- SF: fix spatial links U_i on time boundaries t = 0, L+ give fermions a spatial twist
- χ S explicitly broken \Rightarrow additive renormalization of $m_q \Rightarrow$ must fix $\kappa = \kappa_c$
 - 1. Define m_q via AWI

$$m_q \equiv \frac{1}{2} \left. \frac{\partial_4 \left\langle A_4^b(t) \ \mathcal{O}^b(t'=0, \vec{p}=0) \right\rangle}{\langle P^b(t) \ \mathcal{O}^b(t'=0, \vec{p}=0) \rangle} \right|_{t=L/2}$$

2. Find $\kappa_c(\beta)$ by setting $m_q = 0$. Work directly at κ_c : stabilized by SF BC's!

CALCULATING THE β FUNCTION: the Schrödinger Functional

We want $\Gamma \equiv -\log Z$ since $\Gamma \equiv \frac{1}{g^2(L)}S^{cl}_{YM}$. But we can't calculate Γ directly ...

Choose boundary values U_i to depend on a parameter η . Then

$$\frac{\partial\Gamma}{\partial\eta} = \left\langle \frac{\partial S_{YM}}{\partial\eta} - \operatorname{tr}\left(\frac{1}{D_F^{\dagger}} \frac{\partial (D_F^{\dagger} D_F)}{\partial\eta} \frac{1}{D_F}\right) \right\rangle = \frac{K}{g^2(L)}, \qquad K \equiv \frac{\partial S_{YM}^{cl}}{\partial\eta} = 37.7\dots$$

EXTRACTING PHYSICS

- 1. Fix lattice size *L*, couplings β , $\kappa = \kappa_c(\beta)$
- 2. Calculate $K/g^2(L)$ and $K/g^2(2L)$. Use common lattice spacing (= UV cutoff) a = L/4.
- 3. Result: Discrete Beta Function

$$B(u, 2) = \frac{K}{g^2(2L)} - \frac{K}{g^2(L)}$$

a function of $u \equiv K/g^2(L)$.

Cf. $6^4 \longrightarrow 8^4$

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q\bar{q}$ potential is almost Coulombic: $V(r)\simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q\bar{q}$ potential is almost Coulombic: $V(r)\simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

"PHASE DIAGRAM" in finite volume

(T. DeGrand, following talk)

L = 8a

Note weak coupling at IRFP

Caveat cursor

- Is there only one, unique running coupling?
 - Perturbatively, yes.
 - If the $q\bar{q}$ potential is almost Coulombic: $V(r)\simeq g^2(r)/r$
- Is it really an IRFP?
- Can we extend the picture off the $\kappa_c(\beta)$ curve?

ANSWERS will come from:

- More knowledge of phase diagram
- Checking beta function with more volumes
- Eventually: scaling towards the continuum limit

MORE QUESTIONS

• Properties of (near-) conformal theory