Transverse Momentum Distributions of Partons in the Nucleon

Bernhard Musch Technische Universität München

presenting work in collaboration with LHPC and

Philipp Hägler (TUM), Andreas Schäfer, Meinulf Göckeler (Univ. Regensburg), John Negele (MIT), Dru Renner (DESY Zeuthen)

Technische Universität München

supported by

motivation: parton picture

Fast nucleon: Quarks look like "partons". Distribution depends on

- momentum fraction $\boldsymbol{x} \equiv k^+/P^+$ of the nucleon momentum \boldsymbol{P} ,
 - intrinsic transverse momentum k_{\perp} ,
 - transverse position b_{\perp} (impact parameter).

motivation: parton picture

How are the quarks distributed with respect to x and k_{\perp} ?

TMDPDFs

transverse momentum dependent parton distribution functions

e.g. $f_1(x,k_\perp)$

Fast nucleon: Quarks look like "partons". Distribution depends on

- momentum fraction $\boldsymbol{x} \equiv k^+/P^+$ of the nucleon momentum \boldsymbol{P} ,
 - intrinsic transverse momentum k_{\perp} ,
 - transverse position b_{\perp} (impact parameter).

motivation: parton picture

How are the quarks distributed with respect to x and k_{\perp} ?

TMDPDFs

transverse momentum dependent parton distribution functions

e.g. $f_1(x,k_\perp)$

Fast nucleon: Quarks look like "partons". Distribution depends on

- momentum fraction $x \equiv k^+/P^+$ of the nucleon momentum P,
 - intrinsic transverse momentum k_{\perp} ,
 - transverse position b_{\perp} (impact parameter). \Rightarrow

 \Rightarrow PDFs

GPDs

example: semi inclusive deep inelastic scattering experiment $({\bf SIDIS})$

example: semi inclusive deep inelastic scattering experiment (SIDIS)

factorization \implies hard process + <u>soft blobs</u> (non-perturbative)

[Collins, Soper, Sterman PLB 83, NPB 85] [JI, MA, YUAN PRD (2005)], [Mulders, Tangerman NPB (1996)]

non-perturbative correlator, defined as

 $\Phi^{[\Gamma]}(k, P, S) \equiv \ `` \langle P | \, \bar{q}(k) \, \Gamma \, q(k) \, | P \rangle "$

non-perturbative correlator, defined as

$$\Phi^{[\Gamma]}(k, P, S) \equiv \frac{1}{2} \int \frac{d^4\ell}{(2\pi)^4} e^{-ik\cdot\ell} \langle P, S | \bar{q}(\ell) \mathbf{I}(\mathcal{U}q(0) | P, S \rangle$$

gauge link operator \mathcal{U}

$\langle P| ~ \overline{q}(\ell) \, \Gamma \, \mathcal{U} \, q(0) ~ |P\rangle \text{ is gauge invariant.}$

continuum

$$\mathcal{U} \equiv \mathcal{P} \exp\left(-ig \int_{0}^{\ell} d\xi^{\mu} A_{\mu}(\xi)\right)$$

along path from 0 to ℓ

 \rightarrow retains probability interpretation! e.g., [Bacchetta et al., PRL85,712 (2000)]

gauge link operator \mathcal{U}

$\langle P | \ \overline{q}(\ell) \Gamma \mathcal{U} q(0) \ | P \rangle$ is gauge invariant.

→ retains probability interpretation! e.g., [BACCHETTA ET AL., PRL85,712 (2000)]

extracting nucleon structure from the lattice

[We neglect "disconnected contributions" (absent for up minus down).]

extracting TMDPDFs from the lattice

We use the Chroma library [Edwards, Joo (2005)] to process

MILC gauge configurations

staggered Asqtad action, 2+1 flavors, $a \approx 0.124$ fm, $m_{\pi} \approx 500, 610$, and 760 MeV

[Orginos, Toussaint PRD (1999)]

extracting TMDPDFs from the lattice

ratio of correlators far away from nucleon source and sink

 $\frac{C_{3\text{pt}}(\tau, t_{\text{sink}}, P, \ldots)}{C_{2\text{pt}}(t_{\text{sink}}, P, \ldots)} \xrightarrow{0 \ll \tau \ll t_{\text{sink}}}$

matrix element extracted from plateau value

 $\langle P, S | \overline{q}(\ell) \Gamma \mathcal{U} q(0) | P, S \rangle$

extracting TMDPDFs from the lattice

ratio of correlators far away from nucleon source and sink

 $\frac{C_{\rm 3pt}(\tau, t_{\rm sink}, P, \ldots)}{C_{\rm 2pt}(t_{\rm sink}, P, \ldots)} \xrightarrow{0 \ll \tau \ll t_{\rm sink}} \langle P, S | \ \overline{q}(\ell) \Gamma \mathcal{U} q(0) \ | P, S \rangle$

isolation of Lorentz-invariant amplitudes compare [MULDERS, TANGERMAN NPB (1996)] $\langle P, S | \ \overline{q}(\ell) \gamma_{\mu} \mathcal{U} q(0) \ |P, S \rangle = 4 \ \tilde{A}_2 \ P_{\mu} + 4i \ m_N^2 \ \tilde{A}_3 \ \ell_{\mu}$ $\langle P, S | \ \overline{q}(\ell) \gamma_{\mu} \gamma^5 \mathcal{U} q(0) \ |P, S \rangle = -4 \ m_N \ \tilde{A}_6 \ S_{\mu} - 4i \ m_N \ \tilde{A}_7 \ P_{\mu}(\ell \cdot S)$ $+ 4 \ m_N^3 \ \tilde{A}_8 \ \ell_{\mu}(\ell \cdot S)$

The amplitudes fulfill $\tilde{A}_i(\ell^2, \ell \cdot P) = \left[\tilde{A}_i(\ell^2, -\ell \cdot P)\right]^*$. Lattice restriction: $\ell_0 = \ell_4 = 0 \implies \ell^2 \le 0, \ |\ell \cdot P| \le |\vec{P}|\sqrt{-\ell^2}$

First Results

(Renormalization is preliminary.)

Re $\tilde{A}_2(\ell^2, \ell \cdot P)$ from the lattice

$$f_1(x,k_\perp) \equiv \int dk^- \Phi^{[\gamma^+]}(k,P,S)$$

1st Mellin moment
$$f_1^{(1)}(-k_\perp) \equiv \int dx \int dk^- \Phi^{[\gamma^+]}(k, P, S)$$

1st Mellin moment
$$f_1^{(1)\text{lat}}(k_{\perp}) \equiv \int dx \int dk^- \Phi^{[\gamma^+]}(k, P, S)$$

= $\int \frac{d^2 \ell_{\perp}}{(2\pi)^2} e^{ik_{\perp} \cdot \ell_{\perp}} 2 \tilde{A}_2(-\ell_{\perp}^2, 0)$

1st Mellin moment
$$f_1^{(1)\text{lat}}(k_{\perp}) \equiv \int dx \int dk^- \Phi^{[\gamma^+]}(k, P, S)$$

= $\int \frac{d^2 \ell_{\perp}}{(2\pi)^2} e^{ik_{\perp} \cdot \ell_{\perp}} 2 \tilde{A}_2(-\ell_{\perp}^2, 0)$

1st Mellin moment
$$f_1^{(1)\text{lat}}(k_{\perp}) \equiv \int dx \int dk^- \Phi^{[\gamma^+]}(k, P, S)$$

= $\int \frac{d^2 \ell_{\perp}}{(2\pi)^2} e^{ik_{\perp} \cdot \ell_{\perp}} 2 \tilde{A}_2(-\ell_{\perp}^2, 0)$

1st Mellin moment
$$f_1^{(1)\text{lat}}(k_\perp) \equiv \int dx \int dk^- \ "\langle P | \bar{q}(k)\gamma^+q(k) | P \rangle "$$

= $\int \frac{d^2\ell_\perp}{(2\pi)^2} e^{ik_\perp \cdot \ell_\perp} 2 \tilde{A}_2(-\ell_\perp^2, 0)$

 $f_1^{(1)\text{lat}}(k_{\perp})$ gives the **density** of quarks with an intrinsic transverse momentum $k_{\perp} = (k_x, k_y)$

1st Mellin moment
$$f_1^{(1)\text{lat}}(k_\perp) \equiv \int dx \int dk^- \ "\langle R[\bar{q}(k)\gamma^+q(k)]P\rangle "$$

= $\int \frac{d^2\ell_\perp}{(2\pi)^2} e^{ik_\perp \cdot \ell_\perp} 2\,\tilde{A}_2(-\ell_\perp^2,0)$

 $f_1^{(1)\text{lat}}(k_{\perp})$ gives the **density** of quarks with an intrinsic transverse momentum $k_{\perp} = (k_x, k_y)$

linear extrapolation $\langle k_{\perp}^2 \rangle^{1/2}$ to physical pion mass

RMS transverse momentum

 $\langle k_{\perp}^2 \rangle^{1/2} = (649 \pm 18_{\text{stat}}) \text{ MeV}$ based on double Gaussian Ansatz

compare phenomenology [ANSELMINO ET AL., PRD71, 074006 (2005)]: $\langle k_{\perp}^2 \rangle^{1/2} \approx 500 \text{ MeV}$ based on single Gaussian Ansatz

In a transversely spin polarized nucleon
$$(\vec{S} \perp \vec{P})$$
:

$$\frac{1}{2} \int dx \int dk^{-} \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k, P, S) = \frac{1}{2} \left(f_{1}^{(1)\text{lat}}(k_{\perp}) + \frac{k_{\perp} \cdot S_{\perp}}{m_{N}} g_{1T}^{(1)\text{lat}}(k_{\perp}) \right)$$

 $g_{1T}^{(1)\text{lat}}$ is obtained from amplitude \tilde{A}_7

In a transversely spin polarized nucleon
$$(\vec{S} \perp \vec{P})$$
:

$$\frac{1}{2} \int dx \int dk^{-} \quad \langle P, S | \quad \langle \bar{q}(k) \gamma^{+} \frac{1}{2} (\mathbb{1} + \gamma^{5}) q(k) \rangle | P, S \rangle \quad =$$

$$\frac{1}{2} \left(f_{1}^{(1) \text{lat}}(k_{\perp}) + \frac{k_{\perp} \cdot S_{\perp}}{m_{N}} g_{1T}^{(1) \text{lat}}(k_{\perp}) \right)$$

density of quarks with positive helicity in a proton with spin pointing in x direction

net transverse momentum k_x

$$\langle k_x \rangle = (135 \pm 10_{\text{stat}} \pm 6_{\text{renorm.}}) \text{ MeV}$$

@ $m_\pi = 500 \text{ MeV}$

In a transversely spin polarized nucleon
$$(\vec{S} \perp \vec{P})$$
:

$$\frac{1}{2} \int dx \int dk^{-} \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k, P, S) = \frac{1}{2} \left(f_{1}^{(1)\text{lat}}(k_{\perp}) + \frac{k_{\perp} \cdot S_{\perp}}{m_{N}} g_{1T}^{(1)\text{lat}}(k_{\perp}) \right)$$

density of quarks with positive helicity in a proton with spin pointing in x direction

net transverse momentum k_x

$$\langle k_x \rangle = (-24 \pm 5_{\text{stat}} \pm 3_{\text{renorm.}}) \text{ MeV}$$

@ $m_\pi = 500 \text{ MeV}$

In a transversely spin polarized nucleon
$$(\vec{S} \perp \vec{P})$$
:

$$\frac{1}{2} \int dx \int dk^{-} \Phi^{[\gamma^{+}\frac{1}{2}(1+\gamma^{5})]}(k, P, S) = \frac{1}{2} \left(f_{1}^{(1)\text{lat}}(k_{\perp}) + \frac{k_{\perp} \cdot S_{\perp}}{m_{N}} g_{1T}^{(1)\text{lat}}(k_{\perp}) \right)$$

density of quarks with positive helicity in a proton with spin pointing in x direction

 k_{\perp} -densities analogous to impact parameter densities [DIEHL, HÄGLER EPJC44 (2005)], [QCDSF PRL98, 222001 (2007)]

see also [G. MILLER PRC76, 065209 (2007)]

Link Renormalization

Thanks to Gunnar Bali and Vladimir Braun (Univ. Regensburg) for helpful discussions

continuum renormalization and Taxi Driver Method

This linear divergence is a long-standing problem in heavy-light calculations.

continuum renormalization and Taxi Driver Method

This linear divergence is a long-standing problem in heavy-light calculations.

continuum renormalization and Taxi Driver Method

Continuum renormalization of Wilson lines [Craigie, Dorn NPB185,204 (1981)]

 $\langle \mathcal{U}_{\rm ren}
angle = Z_z^{-1} \exp(-\delta m L - \nu(\theta)) \langle \mathcal{U}
angle$

L is the total length of the Wilson line Z_z^{-1} , δm , $\nu(\theta)$ are renormalization constants $\delta m \propto \mu = \frac{1}{a}$ removes linear divergence

This linear divergence is a long-standing problem in heavy-light calculations.

link renormalization on the lattice: Taxi Driver Method

working hypothesis: like continuum theory

 $\langle \mathcal{U}_{\rm ren}^{\rm lat} \rangle = Z_z^{-1} \exp(-a\delta m \,\# {\rm links} - \nu \,\# {\rm corners} \,) \langle \mathcal{U}^{\rm lat} \rangle$

Idea: Evaluate straight and step like link paths Tr $\langle 0 | \mathcal{U}^{\text{lat}} | 0 \rangle$ on Landau gauge fixed ensemble. Adjust $a\delta m$, ν such that Tr $\langle 0 | \mathcal{U}^{\text{lat}}_{\text{ren}} | 0 \rangle$ depends smoothly on ℓ only.

 $\frac{1}{3}$ Tr $\langle 0 | \mathcal{U} | 0 \rangle$ on Landau gauge fixed ensemble (no link smearing)

Taxi Driver Renormalization

 $\frac{1}{3}$ Tr $\langle 0 | \mathcal{U}_{ren} | 0 \rangle$ renormalized requiring smoothness

Taxi Driver Renormalization on different lattices

- fine: MILC a = 0.084 fm, $m_{\pi} \approx 760$ MeV
- coarse: MILC a = 0.121 fm, $m_{\pi} \approx 790$ MeV
- with and without HYP smearing (reduces $a\delta m$ drastically)

Still *a*-dependence. Renormalization incomplete or $O(a^2)$ -effects?

Results:

- First lattice calculation of quark distributions f_1^{lat} and g_{1T}^{lat} as a function of transverse momentum.
- Densities of longitudinally polarized quarks in a transversely polarized proton are deformed.

Outlook:

- Analysis of further amplitudes and TMDPDFs.
- Need for improved renormalization of the non-local operators.
- Study of non-straight gauge links similar as in SIDIS.

Backup Slides

a (fm	l)	method	$a\delta m$	ν	Z_z
0.12		taxi	-0.2058(17)	0.04648(80)	1.107(19)
0.12		perturb.	-0.1987		
0.08		taxi	-0.1804(17)	0.04173(69)	1.098(23)
0.08		perturb.	-0.1908		
0.12	smeared	taxi	-0.01228(42)	0.00104(16)	1.021(17)
0.12	smeared	perturb.	-0.0659		
0.08	smeared	taxi	-0.00825(32)	0.00081(11)	1.017(16)
0.08	smeared	perturb.	-0.0631		

Amplitude \tilde{A}_2 compared to VEV of gauge link

$(x,k_{\perp}) - { m factorization} \ { m hypothesis}$

 $\ell \cdot P$ - dependence of $\tilde{A}_2(\ell^2, \ell \cdot P)$

 $\ell \cdot P$ - dependence of $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Re $\tilde{A}_2(\ell^2, \ell \cdot P)$

2 Im $\tilde{A}_2(\ell^2, \ell \cdot P)$

(x, k_{\perp}) -factorization hypothesis

factorization hypothesis

$$f_1^{\text{lat}}(x, \vec{k}_\perp) = \hat{\mathbf{f}}_1^{\text{lat}}(x) f_1^{(1)\text{lat}}(\vec{k}_\perp)$$

as in phenomenological applications, e.g., [ANSELMINO PRD (2005)]

Then \tilde{A}_2 factorizes, too:

$$\tilde{A}_2(\ell^2, \ell \cdot P) = \mathbf{\hat{A}}_2(\ell \cdot P) \ \tilde{A}_2(\ell^2, 0).$$

To test this, we define a **scaled** amplitude

$$\hat{\mathbf{A}}_2(\ell^2, \ell \cdot P) \equiv \frac{\tilde{A}_2(\ell^2, \ell \cdot P)}{\operatorname{Re} \tilde{A}_2(\ell^2, 0)}$$

If factorization holds, $\hat{\mathbf{A}}_2$ should be ℓ^2 -independent.

(x, k_{\perp}) -factorization hypothesis

factorization hypothesis

$$f_1^{\text{lat}}(x, \vec{k}_\perp) = \hat{\mathbf{f}}_1^{\text{lat}}(x) f_1^{(1)\text{lat}}(\vec{k}_\perp)$$

as in phenomenological applications, e.g., [ANSELMINO PRD (2005)]

Then \tilde{A}_2 factorizes, too:

$$\tilde{A}_2(\ell^2, \ell \cdot P) = \mathbf{\hat{A}}_2(\ell \cdot P) \ \tilde{A}_2(\ell^2, 0).$$

To test this, we define a **scaled** amplitude

$$\hat{\mathbf{A}}_2(\ell^2, \ell \cdot P) \equiv \frac{\tilde{A}_2(\ell^2, \ell \cdot P)}{\operatorname{Re} \tilde{A}_2(\ell^2, 0)}$$

If factorization holds, $\hat{\mathbf{A}}_2$ should be ℓ^2 -independent.

15		
	$\ell \cdot P =$	
10	3.77	
	3.46	
	3.14	
	2.83	
	2.51	as and at THE I
	2.20	was xr xr xr 1 II
	1.88	an mary MI 1001
5	1.57	II The Later and the second se
	1.26	T.L.L.R.L. Frankerson and and an and an and an and an and an and an
	. 0.94	The second se
	- 0.63	TT I
	- 0.31	TT
0	- 0.00	
£	-0.31	TT
	-0.63	
	-0.94	
	-1.26	The summary of the second starts of the second seco
-5	-1.57	
	-1.88	The and the set of the
	-2.20	ans are a life in the second
	-2.51	minuter in the second s
-10	2.83	
	-3.14	r _I _T
	3.46	II
	3.77	T ·
		0 0.5 1 1.5
		$\sqrt{-\ell^2}$ (fm)

 $m 2\hat{A}_2 + offse$

comparison to CTEQ parton distributions

All our data for $\mathbf{\hat{A}}_2(\ell^2, \ell \cdot P)$ at $m_\pi \approx 610 \text{ MeV}$

compared to a Fourier transform of $f_1(x)$ from CTEQ5 [LAI ET AL., EPJ C12, 375 (2000)]

 $\ell \cdot P$ + small offsets

comparison to CTEQ parton distributions

All our data for $\mathbf{\hat{A}}_2(\ell^2, \ell \cdot P)$ at $m_\pi \approx 610 \text{ MeV}$

compared to a Fourier transform of $f_1(x)$ from CTEQ5 [LAI ET AL., EPJ C12, 375 (2000)]

 $\ell \cdot P$ + small offsets