Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives Orientifold Planar Equivalence: the chiral condensate

> Biagio Lucini Swansea University

(with A. Armoni, A. Patella, C. Pica [hep-th/0804.4501])

Williamsburg (USA), July 2008

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Biagio Lucini Chiral condensate

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

A. Armoni, M. Shifman and G. Veneziano. *SUSY relics in one-flavor QCD from a new 1/N expansion.* Phys. Rev. Lett. 91, 191601, 2003.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Chiral condensate

Biagio Lucini

Motivations

- Condensates on the lattice
- Proof of the "quenched" equivalence
- Lattice setup
- Results
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

A. Armoni, M. Shifman and G. Veneziano. *SUSY relics in one-flavor QCD from a new 1/N expansion.* Phys. Rev. Lett. 91, 191601, 2003.

Chiral condensate

Biagio Lucini

Motivations

- Condensates on the lattice
- Proof of the "quenched" equivalence
- Lattice setup
- Results
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

M. Unsal and L. G. Yaffe. (*In*)validity of large N orientifold equivalence. Phys. Rev. D74:105019, 2006.

A. Armoni, M. Shifman and G. Veneziano. A note on C-parity conservation and the validity of orientifold planar equivalence. arXiv:hep-th/0701229, 2007.

Chiral condensate

Biagio Lucini

Motivations

- Condensates on the lattice
- Proof of the "quenched" equivalence
- Lattice setup
- Results
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Assuming that planar equivalence works, how large are the 1/N corrections?

Chiral condensate

Biagio Lucini

Motivations

- Condensates on the lattice
- Proof of the "quenched" equivalence
- Lattice setup
- Results
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Assuming that planar equivalence works, how large are the 1/N corrections?

Dynamical fermions difficult to simulate \Rightarrow start with the quenched theory.

Outline

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

1

Condensates on the lattice

2

Proof of the "quenched" equivalence

3 Lattice setup

4 Results

Biagio Lucini Chiral condensate

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

3

\sim		
		nD
\sim	uu	

Chiral condensate

- Biagio Lucini
- Motivations

Condensates on the lattice

- Proof of the "quenched" equivalence Lattice setup Results
- Conclusions and perspectives

Proof of the "quenched" equivalence

- Lattice setup
- 4 Results

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence Lattice setup

Conclusions and perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator
- The two-index representations.
- The bare condensate.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Results

Conclusions and perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

Wilson action.

- Staggered Dirac operator. D = m I
- The two-index representations.
- The bare condensate.

$$S_{YM} = -\frac{2N}{\lambda} \sum_{p} \Re \operatorname{e} \operatorname{tr} U(p)$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Chiral condensate Biagio Lucini

Diagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

_ .

Results

Conclusions and perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

Wilson action.

Ľ

- Staggered Dirac operator. D = m K.
- The two-index representations.
- The bare condensate.

$$\begin{aligned} \partial_{xy} &= m \delta_{xy} - K_{xy} = \\ &= m \delta_{xy} + \frac{1}{2} \sum_{\mu} \eta_{\mu}(x) \left\{ R[U_{\mu}(x)] \delta_{x+\hat{\mu},y} - R[U_{\mu}(x-\hat{\mu})]^{\dagger} \delta_{x-\hat{\mu},y} \right\} \end{aligned}$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setu

Results

Conclusions and perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator D = m K.
- The two-index representations.
 - The bare condensate.

tr Adj
$$[U] = |\operatorname{tr} U|^2 - 1$$

tr S/AS $[U] = \frac{(\operatorname{tr} U)^2 \pm \operatorname{tr}(U^2)}{2}$

ヘロト ヘヨト ヘヨト

臣

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator D = m K.
- The two-index representations.
- The bare condensate.

For S/AS representations:

$$\langle \bar{\psi}\psi \rangle_q = \frac{1}{V} \langle \operatorname{Tr}(m-K)^{-1} \rangle_{YM}$$

For the adjoint representation:

$$\langle \lambda \lambda \rangle_q = \frac{1}{2V} \langle \operatorname{Tr}(m-K)^{-1} \rangle_{YM}$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Outline

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

2 Proof of the "quenched" equivalence

Biagio Lucini

Lattice setup

4 Results

< □ ▶ < ⊡ ▶ < ∃ ▶ < ∃ ▶
 Chiral condensate

æ

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{S/AS}})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{Adj}})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

- Replace the two-index representations.
- Take the large-*N* limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-N limit can be exchanged with the series.

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{Adj})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

Replace the two-index representations.

- Take the large-*N* limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-N limit can be exchanged with the series.

$$\frac{1}{VN^2} \langle \operatorname{Tr}(m-K)^{-1} \rangle = \frac{1}{VN^2} \sum_{n=0}^{\infty} \frac{1}{m^{n+1}} \langle \operatorname{Tr} K^n \rangle =$$
$$= \frac{1}{VN^2} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \langle \operatorname{tr} \mathbf{R}[U(\omega)] \rangle$$

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{S/AS}})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{Adj}})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

Replace the two-index representations.

- Take the large-*N* limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-N limit can be exchanged with the series.

$$\frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\text{S/AS}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle [\operatorname{tr} U(\omega)]^2 \rangle \pm \langle \operatorname{tr}[U(\omega)^2] \rangle}{N^2}$$
$$\frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle |\operatorname{tr} U(\omega)|^2 \rangle - 1}{N^2}$$

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{Adj})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

- Replace the two-index representations.
- Take the large-N limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-N limit can be exchanged with the series.

$$\frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\text{S/AS}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle [\operatorname{tr} U(\omega)]^2 \rangle \pm \langle \operatorname{tr}[U(\omega)^2] \rangle}{N^2}$$
$$\frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle |\operatorname{tr} U(\omega)|^2 \rangle - 1}{N^2}$$

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{S/AS}})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\mathrm{Adj}})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

- Replace the two-index representations.
- Take the large-N limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-*N* limit can be exchanged with the series.

$$\frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{\text{S/AS}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle \operatorname{tr} U(\omega) \rangle \langle \operatorname{tr} U(\omega) \rangle}{N^2}$$
$$\frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle \operatorname{tr} U(\omega) \rangle \langle \operatorname{tr} U(\omega)^{\dagger} \rangle}{N^2}$$

Chiral condensate Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$\lim_{N \to \infty} \frac{1}{VN^2} \langle \operatorname{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \operatorname{Tr}(m - K_{Adj})^{-1} \rangle$

• Expand in m^{-1} .

Equivalence

- Replace the two-index representations.
- Take the large-*N* limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-*N* limit can be exchanged with the series.

・ロト ・四ト ・ヨト ・ヨト

3

Outline

Chiral condensate

Biagio Lucini

Lattice setup

Lattice setup

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

æ

Biagio Lucini Chiral condensate

A convenient parameterization

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$$\frac{1}{N^2} \langle \bar{\psi}\psi \rangle_{\text{S/AS}} = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle [\text{tr} U(\omega)]^2 \rangle \pm \langle \text{tr}[U(\omega)^2] \rangle}{N^2}$$
$$\frac{1}{N^2} \langle \lambda \lambda \rangle_{\text{Adj}} = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle |\text{tr} U(\omega)|^2 \rangle - 1}{N^2}$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

A convenient parameterization

Chiral condensate

Biagio Lucini

Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and perspectives

$$\begin{split} &\frac{1}{N^2} \langle \bar{\psi}\psi \rangle_{\text{S/AS}} = f\left(m, \frac{1}{N^2}\right) \pm \frac{1}{N} g\left(m, \frac{1}{N^2}\right) \\ &\frac{1}{N^2} \langle \lambda \lambda \rangle_{\text{Adj}} = \tilde{f}\left(m, \frac{1}{N^2}\right) - \frac{1}{2N^2} \langle \bar{\psi}\psi \rangle_{free} \end{split}$$

Planar equivalence: $f(m, 0) = \tilde{f}(m, 0)$.

Strategy

Simulate the condensates at various values of the mass.

- 2 Extract the functions f, g, \tilde{f} .
- 6 Fit at fixed mass:

$$\tilde{f} = a_0 + \frac{b_0}{N^2}$$
 $g = a_1 + \frac{b_1}{N^2}$ $f - \tilde{f} = \frac{a_2}{N^2} + \frac{b_2}{N^4}$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Simulation details

Chiral condensate

- Biagio Lucini
- Motivations
- Condensates on the lattice
- Proof of the "quenched" equivalence

Lattice setup

- Results
- Conclusions and perspectives

- N = 2, 3, 4, 6, 8
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- 14^4 lattice, which corresponds to $L \simeq 2.0$ fm
- 22 values of the bare mass in the range 0.012 ··· 8.0

Outline

Function \tilde{f}

For $m \le 0.2$ we get $\chi^2/\text{dof} \le 0.53$ (we use N = 4, 6, 8).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Function f

For $m \le 0.2$ we get $\chi^2/\text{dof} \le 0.37$ (we are fitting here $f - \tilde{f}$; we use N = 4, 6, 8).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Function g

For $m \le 0.2$ we get $\chi^2/\text{dof} \le 0.17$ (we use N = 4, 6, 8).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Condensate in the adjoint representation

Biagio Lucini

Chiral condensate

Condensate in the antisymmetric representation

А

$$\frac{\langle \bar{\psi}\psi \rangle_{\rm AS}(m=0.012)}{N^2} = 0.23050(22) - \frac{0.4242(11)}{N} - \frac{0.612(43)}{N^2} - \frac{0.811(25)}{N^3}$$

t N = 3, condensate < 0!

Biagio Lucini Chiral condensate

Condensate in the symmetric representation

$$\frac{\langle \bar{\psi}\psi \rangle_{\rm S}(m=0.012)}{N^2} = 0.23050(22) + \frac{0.4242(11)}{N} - \frac{0.612(43)}{N^2} + \frac{0.811(25)}{N^3}$$

$$N = 3 \text{ relative error} \sim 4\%$$

0.3 1/N

Ŧ

At

Biagio Lucini Chiral condensate

Conclusions and perspectives

Chiral condensate

- Biagio Lucini
- Motivations
- Condensates on the lattice
- Proof of the "quenched" equivalence
- Lattice setup
- Results
- Conclusions and perspectives

- First lattice calculation involving fermions in the two-index representations at $N \ge 4$.
- Check of the orientifold planar equivalence in a simple case.
- Computation of the quark condensate
 - For fermions in the adjoint and symmetric representations, the leading 1/N² correction describes the data at N ≥ 3 with an accuracy of a few percents;

< 日 > < 回 > < 回 > < 回 > < 回 > <

- For fermions in the antisymmetric representation higher order corrections play a major role.
- Current and future developments
 - Dynamical fermions;
 - Renormalization of the condensate and continuum limit.