Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Conclusions and
perspectives

Orientifold Planar Equivalence: the chiral condensate

Biagio Lucini
Swansea University

(with A. Armoni, A. Patella, C. Pica [hep-th/0804.4501])

Orientifold planar equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD
A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.

Orientifold planar equivalence

Chiral condensate Biagio Lucini Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.

```
- Assuming that planar equivalence works, how large are the
corrections?
```

A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.

Orientifold planar equivalence

Chiral condensate Biagio Lucini Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / N$ corrections?
M. Unsal and L. G. Yaffe. (In)validity of large N orientifold equivalence. Phys. Rev. D74:105019, 2006.
A. Armoni, M. Shifman and G. Veneziano. A note on C-parity conservation and the validity of orientifold planar equivalence. arXiv:hep-th/0701229, 2007.

Orientifold planar equivalence

Chiral condensate Biagio Lucini Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / N$ corrections?

Orientifold planar equivalence

Chiral condensate Biagio Lucini Motivations

Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / N$ corrections?

Dynamical fermions difficult to simulate \Rightarrow start with the quenched theory.

Outline

Chiral condensate

```
Biagio Lucini
```

Motivations 1 Condensates on the lattice
Condensates on the lattice

Proof of the "quenched"
equivalence
Lattice setup
Results
(3) Lattice setup

Conclusions and
perspectives
2 Proof of the "quenched" equivalence
(4) Results

Outline

Chiral condensate

```
Biagio Lucini
```

Motivations

Condensates
on the lattice
Proof of the "quenched"
equivalence
Lattice setup
Results
Conclusions and
perspectives
(1) Condensates on the lattice

(2) Proof of the "quenched" equivalence

(3) Lattice setup

(4) Results

Condensates on the lattice

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator

Condensates on the lattice

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conctusions and
perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator
- The two-index representations

$$
S_{Y M}=-\frac{2 N}{\lambda} \sum_{p} \Re \mathrm{e} \operatorname{tr} U(p)
$$

Condensates on the lattice

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator.
- The two-index representations.
- The bare condensate.

$$
\begin{aligned}
D_{x y} & =m \delta_{x y}-K_{x y}= \\
& =m \delta_{x y}+\frac{1}{2} \sum_{\mu} \eta_{\mu}(x)\left\{R\left[U_{\mu}(x)\right] \delta_{x+\hat{\mu}, y}-R\left[U_{\mu}(x-\hat{\mu})\right]^{\dagger} \delta_{x-\hat{\mu}, y}\right\}
\end{aligned}
$$

Condensates on the lattice

Chiral condensate

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator $D=m-K$.
- The two-index representations.
- The bare condensate.

$$
\begin{aligned}
& \operatorname{tr} \operatorname{Adj}[U]=|\operatorname{tr} U|^{2}-1 \\
& \operatorname{trS} / \operatorname{AS}[U]=\frac{(\operatorname{tr} U)^{2} \pm \operatorname{tr}\left(U^{2}\right)}{2}
\end{aligned}
$$

Condensates on the lattice

Chiral condensate

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator $D=m-K$.
- The two-index representations.
- The bare condensate.

For S/AS representations:

$$
\langle\bar{\psi} \psi\rangle_{q}=\frac{1}{V}\left\langle\operatorname{Tr}(m-K)^{-1}\right\rangle_{Y M}
$$

For the adjoint representation:

$$
\langle\lambda \lambda\rangle_{q}=\frac{1}{2 V}\left\langle\operatorname{Tr}(m-K)^{-1}\right\rangle_{Y M}
$$

Outline

Chiral condensate

```
Biagio Lucini
```

Motivations
(1) Condensates on the lattice

Condensates on the lattice

Proof of the "quenched"
(2) Proof of the "quenched" equivalence equivalence

Lattice setup
Results
Conclusions and
perspectives

Proof of the "quenched" equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates
on the lattice
Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-}
- Replace the two-index representations.

Proof of the "quenched" equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-1}.
- Replace the two-index representations.
- Take the large- N limit.

$$
\begin{aligned}
\frac{1}{V N^{2}}\left\langle\operatorname{Tr}(m-K)^{-1}\right\rangle & =\frac{1}{V N^{2}} \sum_{n=0}^{\infty} \frac{1}{m^{n+1}}\left\langle\operatorname{Tr} K^{n}\right\rangle= \\
& =\frac{1}{V N^{2}} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}}\langle\operatorname{tr} \mathrm{R}[U(\omega)]\rangle
\end{aligned}
$$

Proof of the "quenched" equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-1}.
- Replace the two-index representations.
- Take the large- N limit.

$$
\begin{aligned}
\frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left\langle[\operatorname{tr} U(\omega)]^{2}\right\rangle \pm\left\langle\operatorname{tr}\left[U(\omega)^{2}\right]\right\rangle}{N^{2}} \\
\frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left.\left.\langle | \operatorname{tr} U(\omega)\right|^{2}\right\rangle-1}{N^{2}}
\end{aligned}
$$

Proof of the "quenched" equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-1}.
- Replace the two-index representations.
- Take the large- N limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large- N limit can be exchanged with the series.

$$
\begin{aligned}
\frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left\langle[\operatorname{tr} U(\omega)]^{2}\right\rangle \pm\left\langle\operatorname{tr}\left[U(\omega)^{2}\right]\right\rangle}{N^{2}} \\
\frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left.\left.\langle | \operatorname{tr} U(\omega)\right|^{2}\right\rangle-1}{N^{2}}
\end{aligned}
$$

Proof of the "quenched" equivalence

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup

Results

Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-1}.
- Replace the two-index representations.
- Take the large- N limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large- N limit can be exchanged with the series.

$$
\begin{aligned}
\frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle\operatorname{tr} U(\omega)\rangle\langle\operatorname{tr} U(\omega)\rangle}{N^{2}} \\
\frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle & =\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle\operatorname{tr} U(\omega)\rangle\left\langle\operatorname{tr} U(\omega)^{\dagger}\right\rangle}{N^{2}}
\end{aligned}
$$

Proof of the "quenched" equivalence

Chiral condensate

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{S} / \mathrm{AS}}\right)^{-1}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 V N^{2}}\left\langle\operatorname{Tr}\left(m-K_{\mathrm{Adj}}\right)^{-1}\right\rangle
$$

- Expand in m^{-1}.
- Replace the two-index representations.
- Take the large- N limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large- N limit can be exchanged with the series.

Outline

Chiral condensate

Biagio Lucini

Motivations
(1) Condensates on the lattice

Condensates on the lattice

Proof of the "quenched"
equivalence
Lattice setup
Results
(3) Lattice setup

Conclusions and
perspectives

A convenient parameterization

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

$$
\begin{aligned}
& \frac{1}{N^{2}}\langle\bar{\psi} \psi\rangle_{\mathrm{S} / \mathrm{AS}}=\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left\langle[\operatorname{tr} U(\omega)]^{2}\right\rangle \pm\left\langle\operatorname{tr}\left[U(\omega)^{2}\right]\right\rangle}{N^{2}} \\
& \frac{1}{N^{2}}\langle\lambda \lambda\rangle_{\mathrm{Adj}}=\frac{1}{2 V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\left.\left.\langle | \operatorname{tr} U(\omega)\right|^{2}\right\rangle-1}{N^{2}}
\end{aligned}
$$

Lattice setup

A convenient parameterization

Chiral condensate

Proof of the "quenched" equivalence

Lattice setup

$$
\begin{aligned}
& \frac{1}{N^{2}}\langle\bar{\psi} \psi\rangle_{\mathrm{S} / \mathrm{AS}}=f\left(m, \frac{1}{N^{2}}\right) \pm \frac{1}{N} g\left(m, \frac{1}{N^{2}}\right) \\
& \frac{1}{N^{2}}\langle\lambda \lambda\rangle_{\mathrm{Adj}}=\tilde{f}\left(m, \frac{1}{N^{2}}\right)-\frac{1}{2 N^{2}}\langle\bar{\psi} \psi\rangle_{\text {free }}
\end{aligned}
$$

Planar equivalence: $f(m, 0)=\tilde{f}(m, 0)$.

Strategy

(1) Simulate the condensates at various values of the mass.
(2) Extract the functions f, g, \tilde{f}.
(3) Fit at fixed mass:

$$
\tilde{f}=a_{0}+\frac{b_{0}}{N^{2}} \quad g=a_{1}+\frac{b_{1}}{N^{2}} \quad f-\tilde{f}=\frac{a_{2}}{N^{2}}+\frac{b_{2}}{N^{4}}
$$

Simulation details

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup Results

Conclusions and
perspectives

- $N=2,3,4,6,8$
- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- 14^{4} lattice, which corresponds to $L \simeq 2.0 \mathrm{fm}$
- 22 values of the bare mass in the range $0.012 \cdots 8.0$

Outline

Chiral condensate

Biagio Lucini

Motivations
1 Condensates on the lattice
Condensates
on the lattice
Proof of the "quenched"
equivalence
Lattice setup
Results
Conclusions and
perspectives

Function \tilde{f}

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

For $m \leq 0.2$ we get $\chi^{2} /$ dof ≤ 0.53 (we use $N=4,6,8$).

Function f

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

For $m \leq 0.2$ we get $\chi^{2} /$ dof ≤ 0.37 (we are fitting here $f-\tilde{f}$; we use $N=4,6,8$).

Function g

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

For $m \leq 0.2$ we get $\chi^{2} /$ dof ≤ 0.17 (we use $N=4,6,8$).

Condensate in the adjoint representation

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

$$
\frac{\langle\lambda \lambda\rangle_{\mathrm{Adj}}(m=0.012)}{N^{2}}=0.23050(22)-\frac{0.3134(72)}{N^{2}}
$$

At $N=3$, relative error $\simeq 0.8 \%$.

Condensate in the antisymmetric representation

Chiral condensate

Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

$$
\frac{\langle\bar{\psi} \psi\rangle_{\mathrm{AS}}(m=0.012)}{N^{2}}=0.23050(22)-\frac{0.4242(11)}{N}-\frac{0.612(43)}{N^{2}}-\frac{0.811(25)}{N^{3}}
$$

At $N=3$, condensate <0 !

Condensate in the symmetric representation

Chiral condensate Biagio Lucini

Motivations
Condensates on the lattice

Proof of the "quenched" equivalence

Lattice setup
Results
Conclusions and
perspectives

$$
\frac{\langle\bar{\psi} \psi\rangle_{\mathrm{S}}(m=0.012)}{N^{2}}=0.23050(22)+\frac{0.4242(11)}{N}-\frac{0.612(43)}{N^{2}}+\frac{0.811(25)}{N^{3}}
$$

At $N=3$, relative error $\simeq 4 \%$.

Conclusions and perspectives

Chiral condensate

- First lattice calculation involving fermions in the two-index representations at $N \geq 4$.
- Check of the orientifold planar equivalence in a simple case.
- Computation of the quark condensate
- For fermions in the adjoint and symmetric representations, the leading $1 / N^{2}$ correction describes the data at $N \geq 3$ with an accuracy of a few percents;
- For fermions in the antisymmetric representation higher order corrections play a major role.
- Current and future developments
- Dynamical fermions;
- Renormalization of the condensate and continuum limit.

