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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a
new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.
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another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

M. Unsal and L. G. Yaffe. (In)validity of large N orientifold equivalence. Phys. Rev.
D74:105019, 2006.

A. Armoni, M. Shifman and G. Veneziano. A note on C-parity conservation and the
validity of orientifold planar equivalence. arXiv:hep-th/0701229, 2007.
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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?
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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

Dynamical fermions difficult to simulate ⇒ start with the quenched theory.
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Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Staggered Dirac operator. D = m − K.

The two-index representations.

The bare condensate.
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Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Staggered Dirac operator. D = m − K.

The two-index representations.

The bare condensate.

SYM = −
2N
λ

X
p

<e tr U(p)
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Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Staggered Dirac operator. D = m − K.

The two-index representations.

The bare condensate.

Dxy = mδxy − Kxy =

= mδxy +
1
2

X
µ

ηµ(x)
n

R[Uµ(x)]δx+µ̂,y − R[Uµ(x − µ̂)]†δx−µ̂,y

o
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Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Staggered Dirac operator. D = m − K.

The two-index representations.

The bare condensate.

tr Adj[U] = | tr U|2 − 1

tr S/AS[U] =
(tr U)2 ± tr(U2)

2
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Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Staggered Dirac operator. D = m − K.

The two-index representations.

The bare condensate.

For S/AS representations:

〈ψ̄ψ〉q =
1
V
〈Tr(m − K)−1〉YM

For the adjoint representation:

〈λλ〉q =
1

2V
〈Tr(m − K)−1〉YM
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Proof of the “quenched” equivalence

Equivalence

lim
N→∞

1
VN2

〈Tr(m − KS/AS)
−1〉 = lim

N→∞

1
2VN2

〈Tr(m − KAdj)
−1〉

Expand in m−1.

Replace the two-index representations.

Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.
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Proof of the “quenched” equivalence

Equivalence

lim
N→∞

1
VN2

〈Tr(m − KS/AS)
−1〉 = lim

N→∞

1
2VN2

〈Tr(m − KAdj)
−1〉

Expand in m−1.

Replace the two-index representations.

Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.

1
VN2

〈Tr(m − K)−1〉 =
1

VN2

∞X
n=0

1
mn+1

〈Tr Kn〉 =

=
1

VN2

X
ω∈C

c(ω)

mL(ω)+1
〈tr R[U(ω)]〉
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Proof of the “quenched” equivalence

Equivalence

lim
N→∞

1
VN2

〈Tr(m − KS/AS)
−1〉 = lim

N→∞

1
2VN2

〈Tr(m − KAdj)
−1〉

Expand in m−1.

Replace the two-index representations.

Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.

1
VN2

〈Tr(m − KS/AS)
−1〉 =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈[tr U(ω)]2〉 ± 〈tr[U(ω)2]〉
N2

1
2VN2

〈Tr(m − KAdj)
−1〉 =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈| tr U(ω)|2〉 − 1
N2
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Replace the two-index representations.

Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.

1
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Proof of the “quenched” equivalence

Equivalence

lim
N→∞

1
VN2

〈Tr(m − KS/AS)
−1〉 = lim

N→∞

1
2VN2

〈Tr(m − KAdj)
−1〉

Expand in m−1.

Replace the two-index representations.

Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.

1
VN2

〈Tr(m − KS/AS)
−1〉 =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈tr U(ω)〉〈tr U(ω)〉
N2

1
2VN2

〈Tr(m − KAdj)
−1〉 =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈tr U(ω)〉〈tr U(ω)†〉
N2
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Expand in m−1.
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Take the large-N limit.

Mathematical details. The condensate is an analytical function of each real
mass. The large-N limit can be exchanged with the series.
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A convenient parameterization

1
N2
〈ψ̄ψ〉S/AS =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈[tr U(ω)]2〉 ± 〈tr[U(ω)2]〉
N2

1
N2
〈λλ〉Adj =

1
2V

X
ω∈C

c(ω)

mL(ω)+1

〈| tr U(ω)|2〉 − 1
N2
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A convenient parameterization

1
N2
〈ψ̄ψ〉S/AS = f

„
m,

1
N2

«
±

1
N

g
„

m,
1

N2

«
1

N2
〈λλ〉Adj = f̃

„
m,

1
N2

«
−

1
2N2

〈ψ̄ψ〉free

Planar equivalence: f (m, 0) = f̃ (m, 0).

Strategy

1 Simulate the condensates at various values of the mass.
2 Extract the functions f , g, f̃ .
3 Fit at fixed mass:

f̃ = a0 +
b0

N2
g = a1 +

b1

N2
f − f̃ =

a2

N2
+

b2

N4
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Simulation details

N = 2, 3, 4, 6, 8
β(N) chosen in such a way that (aTc)−1 = 5 (a ' 0.145 fm)
144 lattice, which corresponds to L ' 2.0 fm
22 values of the bare mass in the range 0.012 · · · 8.0

0 2 4 6 8
0

0.2

0.4

0.6

0.8

<
ψ

ψ
>

region I
region II
region III

0 0.005 0.01 0.015 0.02
m

0

0.04

0.08

0.12

<ψ
ψ

>
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Function f̃

N=2

N=3

N=4

N=6

N=8

Infinite N

0 0.2 0.4 0.6 0.8 1
m

0.15

0.2

0.25
f~

For m ≤ 0.2 we get χ2/dof ≤ 0.53 (we use N = 4, 6, 8).
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Function f

N=2

N=3

N=4

N=6

N=8

Infinite N

0 0.2 0.4 0.6 0.8 1
m

0.15

0.2

0.25
f

For m ≤ 0.2 we get χ2/dof ≤ 0.37 (we are fitting here f − f̃ ; we use N = 4, 6, 8).
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Function g

N=2
N=3
N=4
N=6
N=8
Infinite N

0 0.2 0.4 0.6 0.8 1
m

0.2

0.3

0.4

0.5

g

For m ≤ 0.2 we get χ2/dof ≤ 0.17 (we use N = 4, 6, 8).
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Condensate in the adjoint representation

0 0.1 0.2 0.3 0.4 0.5
1/N

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

co
nd

en
sa

te
/N

^2

〈λλ〉Adj(m = 0.012)
N2

= 0.23050(22)−
0.3134(72)

N2

At N = 3, relative error ' 0.8%.

Biagio Lucini Chiral condensate



Chiral
condensate

Biagio Lucini

Motivations

Condensates
on the lattice

Proof of the
“quenched”
equivalence

Lattice setup

Results

Conclusions
and
perspectives

Condensate in the antisymmetric
representation

0 0.1 0.2 0.3 0.4 0.5
1/N

0

0.05

0.1

0.15

0.2

co
nd

en
sa

ta
/N

^2

〈ψ̄ψ〉AS(m = 0.012)
N2

= 0.23050(22)−
0.4242(11)

N
−

0.612(43)
N2

−
0.811(25)

N3

At N = 3, condensate < 0!
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Condensate in the symmetric representation

0 0.1 0.2 0.3 0.4 0.5
1/N

0.22

0.24

0.26

0.28

0.3

0.32

0.34

co
nd

en
sa

te
/N

^2

〈ψ̄ψ〉S(m = 0.012)
N2

= 0.23050(22) +
0.4242(11)

N
−

0.612(43)
N2

+
0.811(25)

N3

At N = 3, relative error ' 4%.
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Conclusions and perspectives

First lattice calculation involving fermions in the two-index representations at
N ≥ 4.

Check of the orientifold planar equivalence in a simple case.

Computation of the quark condensate
For fermions in the adjoint and symmetric representations, the leading
1/N2 correction describes the data at N ≥ 3 with an accuracy of a few
percents;
For fermions in the antisymmetric representation higher order
corrections play a major role.

Current and future developments
Dynamical fermions;
Renormalization of the condensate and continuum limit.
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