A non-perturbative test of the chirally rotated Schrödinger functional

Björn Leder in collaboration with Stefan Sint

School of Mathematics Trinity College Dublin, Ireland

Lattice 2008 College of William and Mary, Williamsburg Virginia, USA, 2008 July 14–19

Motivation

SF = Schrödinger functional

standard SF, m=0

rotated SF, m=0

rotated SF:

✓ automatic O(a) improvement in the bulk for $\alpha = \pi/2$

✓ automatic O(a) improvement for parity even observables (just like tmQCD) × only n_f even so far

thus:

- → no need for c_{SW} , c_A , c_V for $n_f = 4$
- → expect reduced cutoff effects for (parity odd) 4-fermion operators
- → SF more attractive then ever

Lattice action of the rotated SF

- gauge part of the action same as standard SF
- Dirac operator in the fermion action:

$$aD_W\psi(x) = -U(x,0)P_-\psi(x+a\hat{0}) + K\psi(x) - U(x-a\hat{0},0)^{\dagger}P_+\psi(x-a\hat{0})$$

where
$$\psi(x) = 0$$
 for $x_0 \le 0$ and $x_0 \ge T - a$

 $K\psi(x) = (1 + am_0 + a \text{ spatial Wilson } + c_{SW}a \text{ SW term})\psi(x)$

$$+ \delta_{x_0,a} i \gamma_5 \tau^3 P_- \psi(x) + \delta_{x_0,T-a} i \gamma_5 \tau^3 P_+ \psi(x)$$

O(1) and O(a) boundary counter terms: $D_W \rightarrow D_W + \delta D_W$

$$\delta D_W \psi(x) = (\delta_{x_0,a} + \delta_{x_0,T-a}) \left[(z_f - 1) + (d_s - 1)a \text{ spatial Wilson} \right] \psi(x)$$

Correlation functions

standard SF

rotated SF

$$\zeta(\mathbf{X}) = U(x,0)|_{x_0=a} P_{-}\psi(x)|_{x_0=a}$$

$$\zeta(\mathbf{X}) = U(x,0)|_{x_0=a}\psi(x)|_{x_0=a}$$

$$\overline{\zeta}(\mathbf{X}) = \overline{\psi}(x)|_{x_0=a} P_+ U(x,0)^{-1}|_{x_0=a}$$

$$\overline{\zeta}(\mathbf{X}) = \overline{\psi}(x)|_{x_0 = a} U(x, 0)^{-1}|_{x_0 = a}$$

$$\mathcal{O}^{a} = a^{6} \sum_{\mathbf{y}, \mathbf{z}} \overline{\zeta}(\mathbf{y}) \gamma_{5} \frac{1}{2} \tau^{a} \zeta(\mathbf{z}) e^{i\mathbf{p}(\mathbf{y}-\mathbf{z})}$$

$$\mathcal{Q}^{a}_{\pm} = a^{6} \sum_{\mathbf{y},\mathbf{z}} \overline{\zeta}(\mathbf{y}) \gamma_{5} \frac{1}{2} \tau^{a} \mathcal{Q}_{\pm} \zeta(\mathbf{z}) e^{i\mathbf{p}(\mathbf{y}-\mathbf{z})}$$

$$f_X^{ab}(x_0) = -\langle X^a(x)\mathcal{O}^b \rangle \qquad \qquad g_X^{ab}(x_0)_{\pm} = -\langle X^a(x)\mathcal{Q}^b_{\pm} \rangle$$

where
$$X^{a} = A_{0}^{a}, V_{0}^{a}, S^{a}, P^{a}$$

Williamsburg, VA, USA, 2008

Strategy for a quenched scaling test

For a line of constant physics ($L = 1.436 r_0$): [M.Guagnelli et al., hep-lat/0505002]

1. Fix the parameters of the action

Tune κ :	$m_{\rm PCAC,-} \equiv \frac{\widetilde{\partial}_0 g_A(T/2)}{2g_P(T/2)} = 0$	
Tune z_f :	$g_A(T/2) = 0$	
Set d_s :	$d_s = d_s^{(0)} = 3/2$	

2. Check

Universality:

$$\frac{g_P(x_0)_-}{g_P(T/4)_-} = \frac{f_P(x_0)}{f_P(T/4)} + \mathcal{O}(a^2)$$

Boundary conditions:

 $g_P(x_0 > a)_+ = 0 + \text{cutoff effects}$

Strategy for a quenched scaling test

For a line of constant physics ($L = 1.436 r_0$): [M.Guagnelli et al., hep-lat/0505002]

1. Fix the parameters of the action

Set κ :	values from standard SF with clover Wilson [M.Guagnelli et al., hep-lat/0505002]
Tune z_f :	$g_A(T/2)~=~0$
Set d_s :	$d_s = d_s^{(0)} = 3/2$

2. Check

Universality:

$$\frac{g_P(x_0)_-}{g_P(T/4)_-} = \frac{f_P(x_0)}{f_P(T/4)} + \mathcal{O}(a^2)$$

Boundary conditions:

 $g_P(x_0 > a)_+ = 0 + \text{cutoff effects}$

Tuning of *z*_f

12 x 12 x 12 x 12, $\beta = 6.2885$ 0.06 $8 \ge 8 \ge 8 \ge 8, \beta = 6.0219$ 0.05 0.1 0.04 Ŧ 0.05 0.08 0.03 g_A. 0.06 0.02 0.04 0 ĪŦ 0.02 0.01 g_A. -0.05 Ŧ -0.02 -0.04 -0.01 -0.1 0.8 0.835 0.805 0.81 0.815 0.82 0.825 0.83 -0.06 g_A. 4 -0.08 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 -0.15 16 x 16 x 16 x 16, $\beta = 6.4956$ 4 0.015 -0.2 0.01 0.005 -0.25 -0.005 -0.3 g_A. -0.01 -0.015 -0.35 -0.7 0.75 0.8 0.85 0.9 0.95 1.05 1 -0.02 z -0.025 -0.03 -0.035 0.835 0.845 0.84 0.85 0.855

Williamsburg, VA, USA, 2008

Z,

Tuning of *z_f*

Tune z_f by demanding g_{P+} = minimal ?

Williamsburg, VA, USA, 2008

How critical is κ_c

Williamsburg, VA, USA, 2008

Check: Universality

Williamsburg, VA, USA, 2008

Check: Boundary conditions

standard SF: faster than a^2

rotated SF: linear in a?

Williamsburg, VA, USA, 2008

DD-HMC-SF

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	•	0	0	•	•	•	٠	0
	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0

DD-HMC-SF

Williamsburg, VA, USA, 2008

Status of the DD-HMC-SF

Done:

- Dirac operator (block/full) for standard and rotated SF
- even-odd preconditioning for standard SF
- Cabibbo-Marinari gauge update algorithm
- SAP solver and deflated SAP solver for standard SF

ToDo:

- even-odd for rotated SF
- forces for the HMC

Code publication:

- standard SF code will be published under the GNU license in fall
- rotated SF code will be spring 2009

Summary

- demonstrated tuning of the O(1) boundary counter term in quenched QCD
- checked that rotated SF is in same universality class as standard SF
- used setup (source and boundary terms at x0=a) gives rise to finite normalisation of source fields
- bulk O(a) improvement seems to work
- DD-HMC package has been extended to SF boundary conditions
- DD-HMC-SF will be published soon