Scaling and Chiral Extrapolation

C. Urbach for the ETM Collaboration

Humboldt-Universität zu Berlin

Lattice 2008

Scaling and Chiral Extrapolation for MtmQCD with two light quarks

イロト イポト イヨト イヨト ヨ

I DOC

Continuum, Chiral and Thermodynamic Limits

we need a good understanding of those for extrapolating

- data at finite a to the continuum
- data from unphysical m_q to the physical point (χ PT)
- data in a finite box to infinite volume (χ PT)

in order to control systematic uncertainties

however, we also have very interest in χ PT itself

• e.g. to extract low energy constants

.

European Twisted Mass Collaboration

Members from all over Europe: Cyprus, France, Germany, Great Britain, Italy, Netherlands, Spain, Switzerland

C. Alexandrou, R. Baron, B. Blossier, Ph. Boucaud, M. Brinet, J. Carbonell, P. Dimopoulos, V. Drach, A. Deuzeman, F. Farchioni, R. Frezzotti, V. Gimenez, I. Hailperin, G. Herdoiza, K. Jansen, X. Feng, J. Gonzalez Lopez, T. Korzec, G. Koutsou, Z. Liu, V. Lubicz, G. Martinelli, C. McNeile, C. Michael, I. Montvay, G. Münster, A. Nube, D. Palao, E. Pallante, O. Pène, S. Reker, D. Renner, C. Richards, G.C. Rossi, S. Schäfer, L. Scorzato, A. Shindler, S. Simula, T. Sudmann, C. Tarantino, C. Urbach, A. Vladikas, M. Wagner, U. Wenger

Wilson Twisted Mass Fermions

Wilson Twisted Mass Dirac operator

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu_q \gamma_5 \tau_3$$

[Frezzotti, Grassi, Sint, Weisz, '99]

• when $m_0 = m_{crit}$ (maximal twist) physical observables are $\mathcal{O}(a)$ improved

[Frezzotti, Rossi, 2003]

 bare twisted mass parameter μ_q directly relates to physical quark mass only multiplicative renormalisation

Drawback:

 flavour symmetry explicitly broken at finite *a*-values appears at O(a²) in physical observables

4

A (10) A (10) A (10)

Introduction

Overview

β	<i>a</i> [fm]	$L^3 \cdot T$	<i>L</i> [fm]	$a\mu$	$N_{ m traj}$ ($ au$ = 0.5)	m _{PS} [MeV]
4.05	~ 0.066	$32^{3} \cdot 64$	2.2	0.0030	5200	~ 300
				0.0060	5600	\sim 420
				0.0080	5300	\sim 480
				0.0120	5000	~ 600
		24 ³ · 48	1.6	0.0060	3000×2	\sim 420
		$20^3 \cdot 48$	1.3	0.0060	5300×2	\sim 420
3.9	~ 0.086	24 ³ · 48	2.1	0.0040	10500	~ 300
				0.0064	5600	~ 380
				0.0085	5000	~ 440
				0.0100	5000	\sim 480
				0.0150	5400	\sim 590
		$32^{3} \cdot 64$	2.8	0.0030	4500×2	~ 265
				0.0040	5000	\sim 300
3.8	~ 0.100	24 ³ · 48	2.4	0.0060	4700 × 2	~ 360
				0.0080	3000×2	\sim 410
				0.0110	2800×2	\sim 480
				0.0165	2600×2	\sim 580
		$20^3 \cdot 48$	2.0	0.0060	4000×2	~ 360

The Data

For each value of β and μ_q we'll analyse

data for *af*_{PS}

$$extsf{af}_{ extsf{PS}} = rac{2\mu}{m_{ extsf{PS}}^2} |\langle 0| \mathcal{P}^1(0)|\pi
angle|$$

(no renormalisation needed)

- data for *am*_{PS}
- data for *am*_N
- data for r_0/a , extrapolate to $\mu_q = 0$
- data for Z_P, extrapolate to μ_q = 0 obtained non-pertubatively using RI-MOM

The renormalised quark mass at some renormalisation scale is obtained from

$$\mu_R = \frac{1}{Z_P} \mu_q$$

Introduction Results

Flavour Symmetry Breaking

Flavour symmetry is broken at $\mathcal{O}(a^2) \Rightarrow am_{PS}^0 \neq am_{PS}^{\pm}$

at $\beta = 4.05$ splitting still a large effect

- not easy to measure: disconnected contributions!
- *m*[±]_{PS}, *m*⁰_{PS} mass splitting vanishes like *a*²
- am⁰_{PS} < am[±]_{PS} consistent with prediction from χPT for observed phase structure

.

Flavour Symmetry Breaking

- splitting observed so far only in m_{π^0}
- for other observables O :

$$R_0 = \frac{0^{\pm} - 0^0}{0^{\pm}}$$

	β	$\pmb{a}\mu_{\pmb{q}}$	R ₀
$\mathit{af}_{\mathrm{PS}}$	3.90	0.004	0.04(06)
	4.05	0.003	-0.03(06)
am_V	3.90	0.004	0.02(07)
	4.05	0.003	-0.10(11)
af_{V}	3.90	0.004	-0.07(18)
	4.05	0.003	-0.31(29)
am_{Δ}	3.90	0.004	0.022(29)
	4.05	0.003	-0.004(45)

Isospin splittings compatible with zero

∃ ► < ∃ ►</p>

-

Introduction Results

Finite Size Effects

 correct for finite size effects using χPT comparison of NLO result [Gasser, Leutwyler, 1987, 1988] (GL) to resummed Lüscher formula [Colangelo, Dürr, Haefeli, 2005](CDH)

	β	m _{PS} L	meas [%]	GL [%]	CDH [%]
$m_{\rm PS}$	3.9	3.3	+1.8	+0.6	+1.0
f _{PS}	3.9	3.3	-2.5	-2.5	-2.4
m _{PS}	4.05	3.0	+6.2	+1.8	+4.7
f _{PS}	4.05	3.0	-10.7	-7.3	-8.9
m _{PS}	4.05	3.5	+1.1	+0.8	+1.3
f _{PS}	4.05	3.5	-1.8	-3.2	-2.9

- · as input for the parameters estimates from CDH were used
- CDH describes our data in general better than GL for the price of more parameters

< ロ > < 同 > < 回 > < 回 > < 回 > <

Continuum Extrapolation of m_N in Finite Volume

- finite volume $L/r_0 \sim 5.0$
- linear interpolation to reference points $r_0 m_{\rm PS} = {\rm const}$
- constant extrapolation $a \rightarrow 0$ $\beta = 3.8$ not included
- Only small lattice artifacts (negligible?)!

3 D 🗸 3

Introduction Results

Description with χPT

• quark mass dependence of $f_{\rm PS}$, $m_{\rm PS}$ and $m_{\rm N}$ using $N_f = 2$ continuum $\chi {\rm PT}$

[Gasser, Leutwyler, 1982, Jenkins, Manohar, 1991; Becher, Leutwyler, 1999]

- simultaneous fit of data at $\beta = 3.9$ and $\beta = 4.05$
- step 1: constant continuum extrapolation step 2: continuum χPT fit
- r0/a and Z_P are included as data in the fit
- finite size corrections performed using CDH formulae for $\mathit{f}_{\rm PS}$ and $\mathit{m}_{\rm PS}$

[Colangelo, Dürr, Haefeli, 2005]

no FS correction for $m_{\rm N}$ so far

• statistical error estimated from a bootstrap analysis

▲□▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Introduction Results

Fit Result

- overall $\chi^2/dof = 21/19$
- good quality fit

▲□▶▲圖▶▲필▶▲필▶ / 1911日 / 2000

Estimate Systematic Effects

quark mass dependence in formulae

• for $f_{\rm PS}$ and $m_{\rm PS}$

$$r_{0}f_{\rm PS} = r_{0}f_{0}\left[1 - 2\xi \log\left(\frac{\chi_{\mu}}{\Lambda_{4}^{2}}\right) + D_{f_{\rm PS}}a^{2}/r_{0}^{2} + T_{\rm NNLO}\right]K_{f}^{\rm CDH}(L)$$
$$(r_{0}m_{\rm PS})^{2} = \chi_{\mu}r_{0}^{2}\left[1 + \xi \log\left(\frac{\chi_{\mu}}{\Lambda_{3}^{2}}\right) + D_{m_{\rm PS}}a^{2}/r_{0}^{2} + T_{\rm NNLO}\right]K_{m}^{\rm CDH}(L)^{2}$$

with

$$\xi \equiv \frac{2B_R\mu_R}{(4\pi f_0)^2} , \quad \chi_\mu \equiv 2B_R\mu_R , \quad f_0 = \sqrt{2}F_0$$

and $T_{\rm NNLO}$ stands for continuum NNLO terms

• and for the nucleon using $HB\chi PT$

[Jenkins, Manohar, 1991; Becher, Leutwyler, 1999]

$$r_0 m_N = r_0 M_N - \frac{4c_1}{r_0} \chi_\mu r_0^2 - \frac{6g_A^2}{32\pi f_0^2 r_0^2} (\chi_\mu r_0^2)^{3/2} + r_0 M_N D_{m_N} a^2 / r_0^2$$

Estimate Systematic Effects

- estimate systematic effects by
 - changing the way the continuum extrapolation is done
 - varying the fit-range
 - including NNLO for m_{PS} and f_{PS}

伺 ト イヨ ト イヨト

= 200

15

$f_{\rm PS}$: higher order $\chi {\rm PT}$ and fit range

- constant continuum
 extrapolation
- red: *β* = 3.90
- blue: *β* = 4.05

overall χ^2 :

- NLO fit: $\chi^2/dof = 21/19$
- NNLO fit: $\chi^2/dof = 19/19$
- NNLO, extended fit-range $\chi^2/dof = 50/23$

伺 ト イヨ ト イヨト

= 200

16

$f_{\rm PS}$: higher order $\chi {\rm PT}$ and fit range

- constant continuum
 extrapolation
- red: *β* = 3.90
- blue: *β* = 4.05

overall χ^2 :

- NLO fit: $\chi^2/dof = 21/19$
- NNLO fit: $\chi^2/dof = 19/19$
- NNLO, extended fit-range $\chi^2/dof = 50/23$

A (10) A (10)

= 200

- 14

$f_{\rm PS}$: higher order $\chi {\rm PT}$ and fit range

for largest mass (N)NLO χ PT presumably not applicable

< ロ > < 同 > < 回 > < 回 > < 回 > <

-

f_{PS}: lattice artifacts

= 900

f_{PS}: lattice artifacts

Scaling and Chiral Extrapolation for MtmQCD with two light quarks

= 900

Introduction Results

f_{PS}: lattice artifacts

however, all D_X zero within errors \Rightarrow not significant

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$m_{ m PS}^2/\mu_q$: higher order χ PT and fit range

- constant continuum extrapolation
- red: β = 3.90
- blue: $\beta = 4.05$

overall χ^2 :

• NLO fit: $\chi^2/dof = 21/19$

• NNLO fit:
$$\chi^2/dof = 19/19$$

• NNLO, extended fit-range $\chi^2/dof = 50/23$

伺 ト イヨ ト イヨト

ъ.

22

$m_{ m PS}^2/\mu_q$: higher order χ PT and fit range

- constant continuum extrapolation
- red: *β* = 3.90
- blue: $\beta = 4.05$

overall χ^2 :

• NLO fit: $\chi^2/dof = 21/19$

• NNLO fit:
$$\chi^2/dof = 19/19$$

• NNLO, extended fit-range $\chi^2/dof = 50/23$

A (10) A (10)

-

$m_{ m PS}^2/\mu_q$: higher order χ PT and fit range

- constant continuum extrapolation
- red: *β* = 3.90
- blue: *β* = 4.05

overall χ^2 :

• NLO fit: $\chi^2/dof = 21/19$

• NNLO fit:
$$\chi^2/dof = 19/19$$

• NNLO, extended fit-range $\chi^2/dof = 50/23$

ъ.

24

$m_{\rm N}$: changing the fit range

- constant continuum extrapolation
- red: *β* = 3.90
- blue: *β* = 4.05

overall χ^2 :

- NLO fit: $\chi^2/dof = 21/19$
- NNLO, extended fit-range $\chi^2/dof = 50/23$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

= 900

 r_0m_N

$m_{\rm N}$: changing the fit range

25

イロト イポト イヨト イヨト ヨ

E SQA

Fit Results

mean values and statistical errors come from NLO fit

pion sector

•
$$\bar{\ell}_3 = 3.43(8)(^{+0}_{-28})(^{+8}_{-0})$$

•
$$\bar{\ell}_4 = 4.60(4)(10)(^{+8}_{-4})$$

- f₀ = 121.7(1)(6)(0) MeV
- $B_0 = 2571(44)(^{+0}_{-100})(^{+200}_{-0})$ MeV
- $\Sigma^{1/3} = -267(2)(^{+0}_{-4})(^{+10}_{-0})$ MeV
- $f_{\pi}/f_0 = 1.0740(7)(30)(^{+6}_{-0})$

nucleon sector

- $m_{\rm N} = 962(45)(10)(3)$
- $c_1 = -1.13(27)(5)(20), g_A = 1.13(21)(5)(10)$

errors: statistical, NNLO, a2

Conclusion

- flavour symmetry breaking negligible in many quantities but large in the $\pi^\pm\text{-}\,\pi^0$ mass splitting
- finite size effects in f_{PS} , m_{SP} describable with CDH formulae
- lattice artifacts appear to be small to current statistical accuracy (\sim 1%)
- data can be fitted with continuum χPT
 - extract LEC's with high precision
 - determine nucleon mass $m_{\rm N} = 962(45)(10)(3) \, {\rm MeV}$
- systematic uncertainties for some quantities larger than statistical error

< ロ > < 同 > < 回 > < 回 > < 回 > <

ELE SQC

Sommer Parameter r₀

- statistical accuracy of less than 0.5%,
- compatible with μ_q^2 dependence
- μ_q-dependence is rather weak unlike Wilson / Wilson clover

⇒ at
$$\mu_q \rightarrow 0$$
:
 $\beta = 3.8$: $r_0/a = 4.46(3)$
 $\beta = 3.9$: $r_0/a = 5.22(2)$
 $\beta = 4.05$: $r_0/a = 6.61(3)$

28

Non-perturbative Renormalisation

- RI-MOM renormalisation scheme [Martinelli et al., 1995]
- $\mathcal{O}(a)$ improved at maximal twist
- compatible with μ^2 dependence
- nicely consistent with WI method / mixed action (MA) approach
- possible alternative: Schrödinger functional

[Frezzotti, Rossi, 2005; Sint, 2006]

Continuum Extrapolation *f*_{PS} in Finite Volume

[[]ETMC, arXiv:0710.2498, arXiv:0710.1517]

- finite volume $L/r_0 \sim 5.0$
- linear interpolation to reference points
 r₀m_{PS} = const
- constant extrapolation $a \rightarrow 0$ $\beta = 3.8$ not included
- ⇒ Only small lattice artifacts (negligible?)!

30

Finite Size Effects

- our data is compatible with exponential behaviour in *m*_{PS} · *L*
- NLO χ PT [Gasser, Leutwyler, 1987, 1988] (GL)

$$egin{aligned} m_{ ext{PS}}(L) &= m_{ ext{PS}} \Big[1 + rac{1}{2} rac{m_{ ext{PS}}^2}{(4\pi f_0)^2} ilde{g}_1(m_{ ext{PS}}L) \Big] \ f_{ ext{PS}}(L) &= f_{ ext{PS}} \left[1 - 2 rac{m_{ ext{PS}}^2}{(4\pi f_0)^2} ilde{g}_1(m_{ ext{PS}}L) \Big] \,, \end{aligned}$$

.

- NNLO known for *m*_{PS} [Colangelo, Haefeli, 2006]
 - however, resummed asymptotic Lüscher formula provides higher orders easier [Colangelo, Dürr, Haefeli, 2005] (CDH) but depends on many LECs: Λ₁, Λ₂, Λ₃, ...