${\cal B}_{\cal K}$ for 2+1 flavour domain wall fermions from 24^3 and $32^3\times 64$ lattices

Chris Kelly

University of Edinburgh RBC & UKQCD Collaborations

Mon 14th July

Ensemble details

Ensemble details

Measurement of B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K

The non-perturbative renormalisation of B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K

The non-perturbative renormalisation of B_K

Conclusions and Outlook

Indirect CP violation in neutral kaon sector

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

$$A(K^0
ightarrow ar{K}^0) = rac{G_F}{2} \sum_i V^i_{
m CKM} C_i(\mu) \langle K^0 | Q_i(\mu) | ar{K}^0
angle$$

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

$$A(K^0 o ar{K}^0) = rac{G_F}{2} \sum_i V^i_{
m CKM} C_i(\mu) \langle K^0 | Q_i(\mu) | ar{K}^0
angle$$

 $\begin{array}{l} \text{scheme dependent} \\ \text{perturbative factor} \\ \text{summarising} \\ \text{contributions from} \\ \text{scales} \gg \mu \end{array}$

(日) (四) (王) (日) (日) (日)

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

scheme dependent hadronic matrix element at scale $\mu \sim M_K$ obtainable from lattice

$$A(K^0 \to \bar{K}^0) = \frac{G_F}{2} \sum_i V^i_{\rm CKM} C_i(\mu) \overline{\langle K^0 | Q_i(\mu) | \bar{K}^0 \rangle}$$

scheme dependent perturbative factor summarising contributions from scales $\gg \mu$

▶ B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

B_K

▶ B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

$$B_{K} \equiv \frac{\langle K^{0} | \mathcal{O}_{VV+AA} | \bar{K}^{0} \rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}}$$

 B_K

▶ B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

$$B_{K} \equiv \frac{\langle K^{0} | \mathcal{O}_{VV+AA} | \bar{K}^{0} \rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}}$$

$${\cal O}_{VV+AA}=(ar s\gamma_\mu d)(ar s\gamma_\mu d)+(ar s\gamma_5\gamma_\mu d)(ar s\gamma_5\gamma_\mu d)$$

 B_K

▶ B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

$$B_K \equiv \frac{\langle K^0 | \mathcal{O}_{VV+AA} | \bar{K}^0 \rangle}{\frac{8}{3} f_K^2 M_K^2}$$

$$\mathcal{O}_{VV+AA} = (\bar{s}\gamma_{\mu}d)(\bar{s}\gamma_{\mu}d) + (\bar{s}\gamma_{5}\gamma_{\mu}d)(\bar{s}\gamma_{5}\gamma_{\mu}d)$$

B_K related to measure of indirect CP violation ε_K = K_L→(ππ) →relation contains unknown *direct* CP violating parameters.

B_K

▶ B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

$$B_{K} \equiv \frac{\langle K^{0} | \mathcal{O}_{VV+AA} | \bar{K}^{0} \rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}}$$

$$\mathcal{O}_{VV+AA} = (\bar{s}\gamma_{\mu}d)(\bar{s}\gamma_{\mu}d) + (\bar{s}\gamma_{5}\gamma_{\mu}d)(\bar{s}\gamma_{5}\gamma_{\mu}d)$$

- ► B_K related to measure of indirect CP violation $\epsilon_K = \frac{K_L \rightarrow (\pi \pi)}{K_S \rightarrow (\pi \pi)}$ \rightarrow relation contains unknown *direct* CP violating parameters.
- ► ϵ_K known experimentally to high precision $\Rightarrow B_K$ constrains unknown direct CP violating parameters.

Ensemble details

 $\mathbf{24^3}\times\mathbf{64}$

 2+1f domain wall fermion ensemble with L_s = 16 $\mathbf{32^3}\times\mathbf{64}$

 2+1f domain wall fermion ensemble with L_s = 16

$\mathbf{24^3} imes \mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$

$\mathbf{32^3}\times\mathbf{64}$

 2+1f domain wall fermion ensemble with L_s = 16

$\mathbf{24^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$

$\mathbf{32^3}\times\mathbf{64}$

► 2+1f domain wall fermion ensemble with L_s = 16

• Iwasaki gauge action $\beta = 2.25$

$\mathbf{24^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$
- ▶ $a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3 \text{ lattice volume}$

$\mathbf{32^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.25$

$\mathbf{24^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$
- ▶ $a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3 \text{ lattice volume}$

$\mathbf{32^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.25$
- ► $a^{-1} = 2.42(4) \frac{0.47}{r_0 \, (\text{fm})} \text{ GeV} \rightarrow (2.61 \, \text{fm})^3 \text{ lattice volume}$

$\mathbf{24^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$
- ► $a^{-1} = 1.729(28)$ GeV \rightarrow $(2.74 \,\mathrm{fm})^3$ lattice volume
- Strange sea quark mass 0.04 lattice units

$\mathbf{32^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.25$
- ► $a^{-1} = 2.42(4) \frac{0.47}{r_0 \, (\text{fm})} \text{ GeV} \rightarrow (2.61 \, \text{fm})^3 \text{ lattice volume}$

$\mathbf{24^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.13$
- ► $a^{-1} = 1.729(28)$ GeV \rightarrow $(2.74 \,\mathrm{fm})^3$ lattice volume
- Strange sea quark mass 0.04 lattice units

$\mathbf{32^3}\times\mathbf{64}$

- 2+1f domain wall fermion ensemble with L_s = 16
- Iwasaki gauge action $\beta = 2.25$
- ► $a^{-1} = 2.42(4) \frac{0.47}{r_0 \, (\text{fm})} \text{ GeV} \rightarrow (2.61 \, \text{fm})^3 \text{ lattice volume}$
- Strange sea quark mass 0.03 lattice units

Up/down sea quark masses

 $\mathbf{24^3}\times\mathbf{64}$

latt. units	$m_{\pi}~({ m MeV})$
0.03	626
0.02	558
0.01	345
0.005	331

 $\mathbf{32^3}\times\mathbf{64}$

latt. units	m_{π} (MeV)
0.008	\sim 420
0.006	~ 360
0.004	\sim 300

Highly preliminary data as datasets only partially complete

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Measurement of B_K

$24^3 imes 64$

 $\mathbf{32^3} \times \mathbf{64}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 2 gauge-fixed wall sources at t = 5, 59 for propagators

$24^3 imes 64$

- 2 gauge-fixed wall sources at t = 5, 59 for propagators
- ► Use p + a boundary conditions → removes unwanted round-the-world contributions.

 $\mathbf{32^3} \times \mathbf{64}$

$24^3 imes 64$

- 2 gauge-fixed wall sources at t = 5, 59 for propagators
- ► Use p + a boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$\mathbf{32^3}\times\mathbf{64}$

$24^3 imes 64$

- 2 gauge-fixed wall sources at t = 5, 59 for propagators
- ► Use p + a boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$\mathbf{32^3}\times\mathbf{64}$

1 gauge-fixed wall source at t = 0

$\mathbf{24^3}\times\mathbf{64}$

- 2 gauge-fixed wall sources at t = 5, 59 for propagators
- ► Use p + a boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$\mathbf{32^3}\times\mathbf{64}$

- 1 gauge-fixed wall source at t = 0
- ► Use p + a and p a boundary conditions → gives forwards and backwards propagating quarks.

・ロト ・ 雪 ト ・ ヨ ト

$\mathbf{24^3}\times\mathbf{64}$

- 2 gauge-fixed wall sources at t = 5, 59 for propagators
- ► Use p + a boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$\mathbf{32^3}\times\mathbf{64}$

- 1 gauge-fixed wall source at t = 0
- ► Use p + a and p a boundary conditions → gives forwards and backwards propagating quarks.

 Costs 2 inversions per configuration.

B_K example plateaux

 $24^3 \times 64 \ m_l = 0.005$

Preliminary $32^3 \times 64 m_l = 0.004$

The chiral extrapolation of B_K

► We use NLO SU(2) × SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.

- ► We use NLO SU(2) × SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- Kaon sector is coupled to SU(2) soft pion loops at lowest order in non-relativistic expansion

- ► We use NLO SU(2) × SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- Kaon sector is coupled to SU(2) soft pion loops at lowest order in non-relativistic expansion
 - \rightarrow direct connection to $HM\chi PT$

- ► We use NLO SU(2) × SU(2) partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- ► Kaon sector is coupled to SU(2) soft pion loops at lowest order in non-relativistic expansion → direct connection to HM_χPT
- 24³ analysis [Allton *et al* arXiv:0804.0473] indicated SU(3) × SU(3) PQChPT has large higher order corrections and doesn't fit data well up to physical strange quark mass (R. Mawhinney).

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\text{res}})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\text{res}})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\text{res}})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\text{res}})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\text{res}})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\text{res}})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\text{res}})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\text{res}})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\rm res})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\rm res})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\rm res})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\rm res})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\rm res})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\rm res})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\rm res})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\rm res})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\rm res})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\rm res})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\rm res})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\rm res})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\rm res})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\rm res})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\rm res})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\rm res})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\rm res})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\rm res})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\rm res})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\rm res})}{\Lambda_{\chi}^{2}}\right) \right]$$

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\text{res}})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\text{res}})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\text{res}})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\text{res}})}{\Lambda_{\chi}^{2}}\right) \right]$$

- ▶ 5 free parameters: B_K^0 , B, f, c_0 , c_1
- ► Use simultaneous pure SU(2) × SU(2) PQChPT fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)

$$B_{K} = B_{K}^{0} \left[1 + \frac{2B(m_{d} + m_{\text{res}})c_{0}}{f^{2}} + \frac{2B(m_{y} + m_{\text{res}})c_{1}}{f^{2}} - \frac{2B(m_{y} + m_{\text{res}})}{32\pi^{2}f^{2}} \log\left(\frac{2B(m_{y} + m_{\text{res}})}{\Lambda_{\chi}^{2}}\right) \right]$$

- ▶ 5 free parameters: B_K^0 , B, f, c_0 , c_1
- ► Use simultaneous pure SU(2) × SU(2) PQChPT fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)

 \rightarrow perform frozen 3-parameter fit to B_K

Simultaneous PQChPT fits to $F_{\rm PS}$ and $M_{\rm PS}$: $f_{\rm PS}$

 $\mathbf{24^3}\times\mathbf{64}$

 $32^3 imes 64$

(日) (同) (日) (日)

Simultaneous PQChPT fits to $F_{\rm PS}$ and $M_{\rm PS}$: $f_{\rm PS}$

 $32^3 \times 64$

< ロ > < 同 > < 回 > < 回 >

Simultaneous PQChPT fits to $F_{\rm PS}$ and $M_{\rm PS}$: $f_{\rm PS}$

- For fixed m_l chiral fit forms non-analytic as m_{x/y} → 0
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along *unitary* curve m_x = m_y = m_l → 0 to obtain physical f_{PS}.

Simultaneous PQChPT fits to F_{PS} and M_{PS} : f_{PS}

- For fixed m_l chiral fit forms non-analytic as m_{x/y} → 0
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along *unitary* curve m_x = m_y = m_l → 0 to obtain physical f_{PS}.
- Unitary curve is finite valued at chiral limit.

Simultaneous PQChPT fits to $F_{\rm PS}$ and $M_{\rm PS}$: $M_{\rm PS}$

 $\mathbf{24^3}\times\mathbf{64}$

 $32^3 \times 64$

(日) (四) (三) (三)

æ

PQChPT fits to B_K

 $24^3 \times 64$

 $32^3 \times 64$

< ロ > < 同 > < 回 > < 回 >

• Unitary curve is fixed m_s , $m_x = m_I
ightarrow m_I^{
m phys}$

æ

PQChPT fits to B_K

 $24^3 \times 64$

 $32^3 imes 64$

(日) (四) (三) (三)

• Unitary curve is fixed m_s , $m_x = m_I
ightarrow m_I^{
m phys}$

æ

$24^3 \times 64 B_K$ chiral limit results – Allton *et al* [arXiv:0804.0473]

▶
$$24^3 \times 64 \ B_K^{lat} = 0.565(10).$$

$24^3 \times 64 B_K$ chiral limit results – Allton *et al* [arXiv:0804.0473]

- ▶ $24^3 \times 64 \ B_K^{lat} = 0.565(10).$
- ► 32³ × 64 extrapolation not yet available, dataset only partially complete

- Stat uncertainties in data sets, unknown physical quark masses

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The non-perturbative renormalisation of B_K

Lattice perturbative (DWF) calculations exist but:

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent

- ▶ Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent
 - involve prescription dependent ambiguities such as MF improvement

- ► Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent
 - involve prescription dependent ambiguities such as MF improvement
- Use Rome-Southampton RI/MOM scheme

•
$$Z_V = Z_A$$
 due to good chiral symmetry

Image: A matrix

UNIVER

- $Z_V = Z_A$ due to good chiral symmetry
- ► At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.

- $Z_V = Z_A$ due to good chiral symmetry
- ► At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.

- $Z_V = Z_A$ due to good chiral symmetry
- ► At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- ► However, even at high momenta we find $\Lambda_A \neq \Lambda_V$ at 2% level

- $Z_V = Z_A$ due to good chiral symmetry
- ► At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- ► However, even at high momenta we find Λ_A ≠ Λ_V at 2% level → difference caused by kinematic choice : Exceptional momentum configuration

- $Z_V = Z_A$ due to good chiral symmetry
- ► At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- ► However, even at high momenta we find Λ_A ≠ Λ_V at 2% level → difference caused by kinematic choice : Exceptional momentum configuration

 \rightarrow Gives weak $1/p^2$ suppression of low energy chiral symmetry breaking.

A D N A P N A D N A D N B

Generic bilinear vertex graph

- Generic bilinear vertex graph
- p² → ∞ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.

- Generic bilinear vertex graph
- p² → ∞ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.

(日) (同) (日) (日)

• For $p_1 \neq p_2$ this is the entire graph.

- Generic bilinear vertex graph
- p² → ∞ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:

- Generic bilinear vertex graph
- p² → ∞ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:

 \rightarrow Low energy subgraph not contained within circled subgraph

(日)、

- Generic bilinear vertex graph
- p² → ∞ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:

 \rightarrow Low energy subgraph not contained within circled subgraph \rightarrow Adding extra external legs to circled subgraph increases suppression of the graph

► However in case p₂ - p₁ = 0 then high momenta do not enter internal subgraphs

- ► However in case p₂ p₁ = 0 then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression

- ► However in case p₂ p₁ = 0 then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression

 This is an exceptional momentum configuration

- ► However in case p₂ p₁ = 0 then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression
- This is an exceptional momentum configuration
- Chiral symmetry breaking induces difference between Λ_A and $\Lambda_V \rightarrow$ use $\frac{1}{2}(\Lambda_A + \Lambda_V) \approx \frac{Z_q}{Z_A}$

A D F A B F A B F A B F

э

Calculate four-quark vertex matrix element in Landau gauge.

・ロ と ・ 望 と ・ 回 と ・ 回 と

- Calculate four-quark vertex matrix element in Landau gauge.
- ► Amputate vertex with ensemble averaged unrenormalised propagator, giving Λ_{OVV+AA}

- Calculate four-quark vertex matrix element in Landau gauge.
- ► Amputate vertex with ensemble averaged unrenormalised propagator, giving A_{OVV+AA}
- ▶ Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

$$\frac{Z_{VV+AA}}{Z_q^2}\Lambda_{\mathcal{O}_{VV+AA}} = \mathcal{O}_{VV+AA}^{\text{tree}}$$

- Calculate four-quark vertex matrix element in Landau gauge.
- ► Amputate vertex with ensemble averaged unrenormalised propagator, giving A_{OVV+AA}
- ▶ Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

$$\frac{Z_{VV+AA}}{Z_q^2}\Lambda_{\mathcal{O}_{VV+AA}}=\mathcal{O}_{VV+AA}^{\text{tree}}$$

$$Z_{BK}^{RI/MOM} \equiv \frac{Z_{VV+AA}}{Z_A^2} \\ = \left(\frac{Z_q^2}{Z_A^2}\right) \frac{Z_{VV+AA}}{Z_q^2}$$

3

・ロ と ・ 望 と ・ 回 と ・ 回 と

- Calculate four-quark vertex matrix element in Landau gauge.
- ► Amputate vertex with ensemble averaged unrenormalised propagator, giving A_{OVV+AA}
- ▶ Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

$$\frac{Z_{VV+AA}}{Z_q^2}\Lambda_{\mathcal{O}_{VV+AA}} = \mathcal{O}_{VV+AA}^{\text{tree}}$$

$$Z_{BK}^{RI/MOM} \equiv \frac{Z_{VV+AA}}{Z_A^2} \\ = \left(\frac{Z_q^2}{Z_A^2}\right) \frac{Z_{VV+AA}}{Z_q^2}$$

• Use
$$\frac{1}{2}(\Lambda_A + \Lambda_V) \approx \frac{Z_q}{Z_A}$$

$$24^3\times 32 \hspace{1.5cm} 32^3\times 64$$

$16^3\times 32$

 $\mathbf{32^3}\times\mathbf{64}$

 Use point sources, 4 quark vertex formed at source location.

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.

$\mathbf{32^3}\times\mathbf{64}$

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$\mathbf{32^3}\times\mathbf{64}$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

э

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$\mathbf{32^3}\times\mathbf{64}$

 Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)

イロト 不得 トイヨト イヨト

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$\mathbf{32^3}\times\mathbf{64}$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$\mathbf{32^3}\times\mathbf{64}$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.
- Volume source has fixed momentum as phase must be applied to source lattice sites before inversion.

$16^3\times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our m_l = 0.03, 0.02 and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$\mathbf{32^3}\times\mathbf{64}$

 Currently calculated 5 independent momenta (10 total) on 10 configurations on our m_l = 0.006 and 0.004 ensembles

 $7_{\rm EV}^{\rm RI/MOM}(\mu)$ ∠_{BK}

 $16^3\times 32$

 $\mathbf{32^3} \times \mathbf{64}$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

 $7_{\text{ev}}^{\text{RI}/\text{MOM}}(\mu)$

 $16^3\times 32$

 $\mathbf{32^3}\times\mathbf{64}$

(日) (四) (三) (三)

 $r^{RI/MOM}(\mu)$ **∽**BK

 $16^3\times 32$

 $\mathbf{32^3} \times \mathbf{64}$

・ロト ・聞ト ・ヨト ・ヨト

Chiral extrapolation – $32^3 \times 64$

 For each Z_{BK}(µ), perform a linear chiral extrapolation to

$$m = -m_{\rm res}$$

Chiral extrapolation – $32^3 \times 64$

 For each Z_{BK}(µ), perform a linear chiral extrapolation to

 $m = -m_{\rm res}$

 32³ lever-arm for extrapolation small compared to extrapolation distance

Chiral extrapolation – $32^3 \times 64$

 For each Z_{BK}(µ), perform a linear chiral extrapolation to

 $m = -m_{\rm res}$

 > 32³ lever-arm for extrapolation small compared to extrapolation distance → Future: Add

$$m_l = 0.008$$
 dataset

 $32^3 \times 64$

 32³ stat errors small compared to systematic error from exceptional momenta.

・ロト ・聞ト ・ヨト ・ヨト

 $32^3 \times 64$

- 32³ stat errors small compared to systematic error from exceptional momenta.
- On 24³ we attributed a 1.5% sys error to this alone.

э

 $32^3 \times 64$

- 32³ stat errors small compared to systematic error from exceptional momenta.
- On 24³ we attributed a 1.5% sys error to this alone.
- ► Difference greatly reduced by using non-exceptional momentum configuration p₁ ≠ p₂

(日)、

 $32^3 \times 64$

- 32³ stat errors small compared to systematic error from exceptional momenta.
- On 24³ we attributed a 1.5% sys error to this alone.
- ► Difference greatly reduced by using non-exceptional momentum configuration p₁ ≠ p₂
- Unfortunately no perturbative calculation available for non-exceptional (Y. Aoki)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Removal of lattice artefacts

 Divide out perturbative running: Quantity is scale invariant up to lattice artefacts

Removal of lattice artefacts

- Divide out perturbative running: Quantity is scale invariant up to lattice artefacts
- Expect quadratic dependence of lattice artefacts on lattice spacing

 \rightarrow fit to form $Z_{BK}^{SI} + B(a\mu)^2$

< ロ > < 同 > < 回 > < 回 >

э
Extrapolation of Z_{BK}^{SI}

 $\mathbf{16^3}\times\mathbf{32}$

 $\mathbf{32^3}\times\mathbf{64}$

・ロト ・聞ト ・ヨト ・ヨト

æ

Extrapolation of Z_{BK}^{SI}

 $\mathbf{16^3}\times\mathbf{32}$

 $32^3 imes 64$

(日) (四) (三) (三)

æ

► Reapply RI/MOM perturbative running to Z^{SI}_{BK} and scale to conventional µ = 2 GeV.

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$

►
$$Z_{BK}^{\overline{\text{MS}}}$$
 (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

A D > A P > A B > A B >

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$

►
$$Z_{BK}^{\overline{\text{MS}}}$$
 (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

Sys errors:

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$
- ► $Z_{BK}^{\overline{\text{MS}}}$ (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).
- Sys errors:
 - ▶ $\mathcal{O}(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis

A D N A P N A D N A D N B

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$
- ► $Z_{BK}^{\overline{\text{MS}}}$ (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).
- Sys errors:
 - ▶ $\mathcal{O}(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
 - $\blacktriangleright \Rightarrow 0.0007$ unphysical strange mass correction

- ► Reapply RI/MOM perturbative running to Z^{SI}_{BK} and scale to conventional µ = 2 GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$
- ► $Z_{BK}^{\overline{\text{MS}}}$ (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).
- Sys errors:
 - ▶ $\mathcal{O}(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
 - \Rightarrow 0.0007 unphysical strange mass correction
 - $\blacktriangleright \Rightarrow 0.0131$ correction for use of exceptional momenta

A D N A P N A D N A D N B

- ▶ Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
- Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{\mathrm{MS}}}$
- ► $Z_{BK}^{\overline{\text{MS}}}$ (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).
- Sys errors:
 - ▶ $\mathcal{O}(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
 - \Rightarrow 0.0007 unphysical strange mass correction
 - $\blacktriangleright \ \Rightarrow 0.0131$ correction for use of exceptional momenta
- Current $32^3 Z_{BK}^{\overline{\mathrm{MS}}}$ stat error ~ 0.0013 .

Conclusions and Outlook

Combining chirally extrapolated B_K with aforementioned Z_{BK} result

► Combining chirally extrapolated B_K with aforementioned Z_{BK} result $\rightarrow B_K^{\overline{MS}}(2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{sys}}$ [arXiv:0804.0473]

- ► Combining chirally extrapolated B_K with aforementioned Z_{BK} result $\rightarrow B_K^{\overline{MS}}(2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{sys}}$ [arXiv:0804.0473]
- Improved techniques for 32³ in use; results expected soon: Watch this space!

