
BK for 2+1 flavour domain wall fermions from
243 and 323 × 64 lattices

Chris Kelly

University of Edinburgh
RBC & UKQCD Collaborations

Mon 14th July



Outline

The neutral kaon mixing amplitude BK



Outline

The neutral kaon mixing amplitude BK

Ensemble details



Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK



Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK



Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK

The non-perturbative renormalisation of BK



Outline

The neutral kaon mixing amplitude BK

Ensemble details

Measurement of BK

The chiral extrapolation of BK

The non-perturbative renormalisation of BK

Conclusions and Outlook



The neutral kaon mixing amplitude BK



Kaon mixing

◮ Indirect CP violation in neutral kaon sector



Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:



Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:



Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:



Kaon mixing

◮ Indirect CP violation in neutral kaon sector

◮ Neutral kaon mixing amplitude:



BK

◮ BK parameterises the matrix element of the four-quark
K 0 → K̄ 0 operator



BK

◮ BK parameterises the matrix element of the four-quark
K 0 → K̄ 0 operator

BK ≡
〈K 0|OVV+AA|K̄

0〉
8
3 f 2

KM2
K



BK

◮ BK parameterises the matrix element of the four-quark
K 0 → K̄ 0 operator

BK ≡
〈K 0|OVV+AA|K̄

0〉
8
3 f 2

KM2
K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)



BK

◮ BK parameterises the matrix element of the four-quark
K 0 → K̄ 0 operator

BK ≡
〈K 0|OVV+AA|K̄

0〉
8
3 f 2

KM2
K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)

◮ BK related to measure of indirect CP violation ǫK = KL→(ππ)
KS→(ππ)

you →relation contains unknown direct CP violating
parameters.



BK

◮ BK parameterises the matrix element of the four-quark
K 0 → K̄ 0 operator

BK ≡
〈K 0|OVV+AA|K̄

0〉
8
3 f 2

KM2
K

OVV+AA = (s̄γµd)(s̄γµd) + (s̄γ5γµd)(s̄γ5γµd)

◮ BK related to measure of indirect CP violation ǫK = KL→(ππ)
KS→(ππ)

you →relation contains unknown direct CP violating
parameters.

◮ ǫK known experimentally to high precision ⇒ BK constrains
unknown direct CP violating parameters.
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Details of ensembles

243 × 64

◮ 2+1f domain wall fermion
ensemble with Ls = 16

◮ Iwasaki gauge action
β = 2.13

◮ a−1 = 1.729(28) GeV →
(2.74 fm)3 lattice volume

◮ Strange sea quark mass 0.04
lattice units

323 × 64

◮ 2+1f domain wall fermion
ensemble with Ls = 16

◮ Iwasaki gauge action
β = 2.25

◮ a−1 = 2.42(4) 0.47
r0 (fm) GeV →

(2.61 fm)3 lattice volume

◮ Strange sea quark mass 0.03
lattice units



Up/down sea quark masses

243 × 64

latt. units mπ (MeV)

0.03 626
0.02 558
0.01 345
0.005 331

323 × 64

latt. units mπ (MeV)

0.008 ∼ 420
0.006 ∼ 360
0.004 ∼ 300

Highly preliminary data as
datasets only partially complete
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Method comparison

243 × 64

◮ 2 gauge-fixed wall sources at
t = 5, 59 for propagators

◮ Use p + a boundary
conditions → removes
unwanted round-the-world
contributions.

◮ Costs 4 inversions per
configuration.

323 × 64

◮ 1 gauge-fixed wall source at
t = 0

◮ Use p + a and p − a

boundary conditions → gives
forwards and backwards
propagating quarks.

◮ Costs 2 inversions per
configuration.



BK example plateaux

243 × 64 ml = 0.005

12 16 20 24 28 32 36 40 44 48 52
t

0.5

0.55

0.6

0.65

B
K

m
x
 = 0.04 m

y
 =0.04

m
x
 = 0.04 m

y
 =0.001

Preliminary 323 × 64 ml = 0.004

12 16 20 24 28 32 36 40 44 48 52
t

0.5

0.55

0.6

0.65

B
K

m
x
 = 0.03 m

y
 = 0.03

m
x
 = 0.03 m

y
 = 0.002
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◮ We use NLO SU(2) × SU(2) partially-quenched chiral
perturbation theory (PQChPT) for maximum use of
ensembles.

◮ Kaon sector is coupled to SU(2) soft pion loops at lowest
order in non-relativistic expansion
text→ direct connection to HMχPT

◮ 243 analysis [Allton et al arXiv:0804.0473] indicated
SU(3) × SU(3) PQChPT has large higher order corrections
and doesn’t fit data well up to physical strange quark mass
(R. Mawhinney).
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SU(2) × SU(2) PQChPT fit form for BK

BK = B0
K

[

1 + 2B(md+mres)c0

f 2 +
2B(my +mres)c1

f 2

−
2B(my+mres)

32π2f 2 log
(

2B(my +mres)
Λ2

χ

) ]

◮ 5 free parameters: B0
K , B , f , c0, c1

◮ Use simultaneous pure SU(2) × SU(2) PQChPT fit (no
coupling to Kaon sector) to FPS and MPS to determine B and
f (E. Scholz)

→ perform frozen 3-parameter fit to BK
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Simultaneous PQChPT fits to FPS and MPS : fPS

◮ For fixed ml chiral fit forms
non-analytic as mx/y → 0

◮ Perform full PQChPT fit to
all data points then
extrapolate to chiral limit
along unitary curve
mx = my = ml → 0 to
obtain physical fPS.

◮ Unitary curve is finite valued
at chiral limit.
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◮ Unitary curve is fixed ms , mx = ml → m
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l
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243 × 64 BK chiral limit results – Allton et al

[arXiv:0804.0473]

◮ 243 × 64 B lat
K = 0.565(10).

◮ 323 × 64 extrapolation not yet available, dataset only partially
complete
text– Stat uncertainties in data sets, unknown physical quark
masses
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Why NPR?

◮ Lattice perturbative (DWF) calculations exist but:
◮ exist only at low order
◮ are poorly convergent
◮ involve prescription dependent ambiguities such as MF

improvement

◮ Use Rome-Southampton RI/MOM scheme
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Bilinear vertices

◮ ZV = ZA due to good chiral symmetry

◮ At high momenta, ΛA = ΛV =
Zq

ZA
=

Zq

ZV
should hold.

◮ Therefore can use ΛA or ΛV as a measure of
Zq

ZA
.

◮ ΛA and ΛV expected to differ at low momenta due to QCD
spontaneous chiral symmetry breaking.

◮ However, even at high momenta we find ΛA 6= ΛV at 2% level
text→ difference caused by kinematic choice : Exceptional
momentum configuration
text→ Gives weak 1/p2 suppression of low energy chiral
symmetry breaking.
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Chiral symmetry breaking and exceptional momenta

◮ Generic bilinear vertex graph

◮ p2 → ∞ behaviour governed by subgraph
with least negative degree of divergence
through which we can route all hard

external momenta.

◮ For p1 6= p2 this is the entire graph.

◮ Can connect to low-energy subgraphs
which are affected by spont. chiral
symmetry breaking, but:
text→ Low energy subgraph not
contained within circled subgraph
text→ Adding extra external legs to
circled subgraph increases suppression of
the graph
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Chiral symmetry breaking and exceptional momenta

◮ However in case p2 − p1 = 0 then high
momenta do not enter internal subgraphs

◮ Graph free to couple to low-energy chiral
symmetry breaking subgraphs with no
further suppression

◮ This is an exceptional momentum
configuration

◮ Chiral symmetry breaking induces
difference between ΛA and ΛV → use
1
2(ΛA + ΛV ) ≈

Zq

ZA
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BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalised
propagator, giving ΛOVV+AA

◮ Renormalisation condition: Fix to tree level value at µ2 = p2

ZVV+AA

Z 2
q
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BK NPR with RI/MOM and exceptional momenta

◮ Calculate four-quark vertex matrix element in Landau gauge.

◮ Amputate vertex with ensemble averaged unrenormalised
propagator, giving ΛOVV+AA

◮ Renormalisation condition: Fix to tree level value at µ2 = p2

ZVV+AA

Z 2
q

ΛOVV+AA
= Otree

VV+AA

◮ Define
Z

RI/MOM

BK ≡ ZVV+AA

Z2
A

=
(

Z2
q

Z2
A

)

ZVV+AA

Z2
q

◮ Use 1
2(ΛA + ΛV ) ≈

Zq

ZA
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Method comparison

163 × 32

◮ Use point sources, 4 quark
vertex formed at source
location.

◮ Average over 4 source
locations on 75
configurations on our
ml = 0.03, 0.02 and 0.01
ensembles.

◮ Momentum applied by
applying phase difference
between propagator source
and sink. Solution can be
given arbitrary momentum.

323 × 64

◮ Currently calculated 5
independent momenta (10
total) on 10 configurations
on our ml = 0.006 and
0.004 ensembles



Z
RI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5
(aµ)2

0.8

0.9

1

1.1

Z
B

K

m
l
 = 0.01

m
l
 = 0.02

m
l
 = 0.03

chiral limit

text
text

323 × 64

text
text



Z
RI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5
(aµ)2

0.8

0.9

1

1.1

Z
B

K

m
l
 = 0.01

m
l
 = 0.02

m
l
 = 0.03

chiral limit

text
text

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)
2

0.8

0.9

1

1.1

Z
B

K

m
l
 = 0.006

m
l
 = 0.004

chiral limit
Point m

l
 = 0.006

text
text



Z
RI/MOM

BK (µ)

163 × 32

0 0.5 1 1.5 2 2.5
(aµ)2

0.8

0.9

1

1.1

Z
B

K

m
l
 = 0.01

m
l
 = 0.02

m
l
 = 0.03

chiral limit

text
text

323 × 64

0 0.5 1 1.5 2 2.5

(aµ)
2

0.91

0.92

0.93

0.94

0.95

Z
B

K

m
l
 = 0.006

m
l
 = 0.004

chiral limit

text
text



Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
m

l

0.91

0.92

0.93

0.94

Z
B

K

0.693957
0.925275
1.31081
1.61923
1.92766

text
text
text

◮ For each ZBK (µ), perform a
linear chiral extrapolation to
m = −mres



Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
m

l

0.91

0.92

0.93

0.94

Z
B

K

0.693957
0.925275
1.31081
1.61923
1.92766

text
text
text

◮ For each ZBK (µ), perform a
linear chiral extrapolation to
m = −mres

◮ 323 lever-arm for
extrapolation small
compared to extrapolation
distance



Chiral extrapolation – 323 × 64

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
m

l

0.91

0.92

0.93

0.94

Z
B

K

0.693957
0.925275
1.31081
1.61923
1.92766

text
text
text

◮ For each ZBK (µ), perform a
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Exceptional momenta systematic error

◮ 323 stat errors small
compared to systematic
error from exceptional
momenta.

◮ On 243 we attributed a
1.5% sys error to this alone.

◮ Difference greatly reduced
by using non-exceptional
momentum configuration
p1 6= p2

◮ Unfortunately no
perturbative calculation
available for non-exceptional
(Y. Aoki)
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◮ Divide out perturbative
running: Quantity is scale
invariant up to lattice
artefacts

◮ Expect quadratic
dependence of lattice
artefacts on lattice spacing

→ fit to form ZSI
BK + B(aµ)2
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243 × 64 result – Aoki et al [arXiv:0712.1061]

◮ Reapply RI/MOM perturbative running to ZSI
BK and scale to

conventional µ = 2 GeV.

◮ Apply conversion factor Z
RI/MOM

BK → ZMS
BK

◮ ZMS
BK (2 GeV) = 0.9276 ± 0.0052(stat) ± 0.0220(sys).

◮ Sys errors:
◮ O(αs) ⇒ 0.0177 corrections due to truncation of perturbative

analysis
◮ ⇒ 0.0007 unphysical strange mass correction
◮ ⇒ 0.0131 correction for use of exceptional momenta

◮ Current 323 ZMS
BK stat error ∼ 0.0013.
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243 × 64 final value and 323 outlook

◮ Combining chirally extrapolated BK with aforementioned ZBK

result text→ BMS
K (2GeV) = 0.524(10)stat(13)ren(25)sys

resulttext→mmmp[arXiv:0804.0473]

◮ Improved techniques for 323 in use; results expected soon:
Watch this space!
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