B_{K} for $2+1$ flavour domain wall fermions from 24^{3} and $32^{3} \times 64$ lattices

Chris Kelly

University of Edinburgh
RBC \& UKQCD Collaborations

Mon $14^{\text {th }}$ July

Outline

The neutral kaon mixing amplitude B_{K}

Outline

The neutral kaon mixing amplitude B_{K}

Ensemble details

Outline

The neutral kaon mixing amplitude B_{K}

Ensemble details

Measurement of B_{K}

Outline

The neutral kaon mixing amplitude B_{K}

Ensemble details

Measurement of B_{K}

The chiral extrapolation of B_{K}

Outline

The neutral kaon mixing amplitude B_{K}

Ensemble details

Measurement of B_{K}

The chiral extrapolation of B_{K}

The non-perturbative renormalisation of B_{K}

Outline

The neutral kaon mixing amplitude B_{K}

Ensemble details

Measurement of B_{K}

The chiral extrapolation of B_{K}

The non-perturbative renormalisation of B_{K}

Conclusions and Outlook

The neutral kaon mixing amplitude B_{K}

Kaon mixing

- Indirect CP violation in neutral kaon sector

Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

$$
A\left(K^{0} \rightarrow \bar{K}^{0}\right)=\frac{G_{F}}{2} \sum_{i} V_{\mathrm{CKM}}^{i} C_{i}(\mu)\left\langle K^{0}\right| Q_{i}(\mu)\left|\bar{K}^{0}\right\rangle
$$

Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:
$A\left(K^{0} \rightarrow \bar{K}^{0}\right)=\frac{G_{F}}{2} \sum_{i} V_{\mathrm{CKM}}^{i} C_{i}(\mu)\left\langle K^{0}\right| Q_{i}(\mu)\left|\bar{K}^{0}\right\rangle$
scheme dependent
perturbative factor
summarising
contributions from
scales $\gg \mu$

Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:
scheme dependent hadronic matrix element at scale $\mu \sim M_{K}$ obtainable from lattice

$$
A\left(K^{0} \rightarrow \bar{K}^{0}\right)=\frac{G_{F}}{2} \sum_{i} V_{\mathrm{CKM}}^{i} C_{i}(\mu) \overbrace{\left\langle K^{0}\right| Q_{i}(\mu)\left|\bar{K}^{0}\right\rangle}
$$

scheme dependent
perturbative factor
summarising
contributions from
scales $\gg \mu$

B_{K}

- B_{K} parameterises the matrix element of the four-quark $K^{0} \rightarrow \bar{K}^{0}$ operator

B_{K}

- B_{K} parameterises the matrix element of the four-quark $K^{0} \rightarrow \bar{K}^{0}$ operator

$$
B_{K} \equiv \frac{\left\langle K^{0}\right| \mathcal{O}_{V V+A A}\left|\bar{K}^{0}\right\rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}}
$$

B_{K}

- B_{K} parameterises the matrix element of the four-quark $K^{0} \rightarrow \bar{K}^{0}$ operator

$$
\begin{gathered}
B_{K} \equiv \frac{\left\langle K^{0}\right| \mathcal{O}_{V V+A A}\left|\bar{K}^{0}\right\rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}} \\
\mathcal{O}_{V V+A A}=\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)
\end{gathered}
$$

B_{K}

- B_{K} parameterises the matrix element of the four-quark $K^{0} \rightarrow \bar{K}^{0}$ operator

$$
\begin{gathered}
B_{K} \equiv \frac{\left\langle K^{0}\right| \mathcal{O}_{V V+A A}\left|\bar{K}^{0}\right\rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}} \\
\mathcal{O}_{V V+A A}=\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)
\end{gathered}
$$

- B_{K} related to measure of indirect CP violation $\epsilon_{K}=\frac{K_{L} \rightarrow(\pi \pi)}{K_{S} \rightarrow(\pi \pi)}$ \rightarrow relation contains unknown direct CP violating parameters.

B_{K}

- B_{K} parameterises the matrix element of the four-quark $K^{0} \rightarrow \bar{K}^{0}$ operator

$$
\begin{gathered}
B_{K} \equiv \frac{\left\langle K^{0}\right| \mathcal{O}_{V V+A A}\left|\bar{K}^{0}\right\rangle}{\frac{8}{3} f_{K}^{2} M_{K}^{2}} \\
\mathcal{O}_{V V+A A}=\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{5} \gamma_{\mu} d\right)
\end{gathered}
$$

- B_{K} related to measure of indirect CP violation $\epsilon_{K}=\frac{K_{L} \rightarrow(\pi \pi)}{K_{S} \rightarrow(\pi \pi)}$ \rightarrow relation contains unknown direct CP violating parameters.
- ϵ_{K} known experimentally to high precision $\Rightarrow B_{K}$ constrains unknown direct $C P$ violating parameters.

Ensemble details

Details of ensembles

$$
24^{3} \times 64
$$

$$
32^{3} \times 64
$$

Details of ensembles

$24^{3} \times 64$
- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$

$32^{3} \times 64$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$

Details of ensembles

$24^{3} \times 64$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action
$\beta=2.13$

Details of ensembles

$24^{3} \times 64$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action

$$
\beta=2.13
$$

$32^{3} \times 64$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action $\beta=2.25$

Details of ensembles

$24^{3} \times 64$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action
$\beta=2.13$
- $a^{-1}=1.729(28) \mathrm{GeV} \rightarrow$
$(2.74 \mathrm{fm})^{3}$ lattice volume
$32^{3} \times 64$
- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action $\beta=2.25$

Details of ensembles

$$
24^{3} \times 64
$$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action
$\beta=2.13$
- $a^{-1}=1.729(28) \mathrm{GeV} \rightarrow$
$(2.74 \mathrm{fm})^{3}$ lattice volume
$32^{3} \times 64$
- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action $\beta=2.25$
- $a^{-1}=2.42(4) \frac{0.47}{r_{0}(\mathrm{fm})} \mathrm{GeV} \rightarrow$
$(2.61 \mathrm{fm})^{3}$ lattice volume

Details of ensembles

$$
24^{3} \times 64
$$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action
$\beta=2.13$
- $a^{-1}=1.729(28) \mathrm{GeV} \rightarrow$
$(2.74 \mathrm{fm})^{3}$ lattice volume
- Strange sea quark mass 0.04 lattice units
$32^{3} \times 64$
- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action $\beta=2.25$
- $a^{-1}=2.42(4) \frac{0.47}{r_{0}(\mathrm{fm})} \mathrm{GeV} \rightarrow$
$(2.61 \mathrm{fm})^{3}$ lattice volume

Details of ensembles

$$
24^{3} \times 64
$$

- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action
$\beta=2.13$
- $a^{-1}=1.729(28) \mathrm{GeV} \rightarrow$
$(2.74 \mathrm{fm})^{3}$ lattice volume
- Strange sea quark mass 0.04 lattice units
$32^{3} \times 64$
- $2+1 \mathrm{f}$ domain wall fermion ensemble with $L_{s}=16$
- Iwasaki gauge action $\beta=2.25$
- $a^{-1}=2.42(4) \frac{0.47}{r_{0}(\mathrm{fm})} \mathrm{GeV} \rightarrow$ $(2.61 \mathrm{fm})^{3}$ lattice volume
- Strange sea quark mass 0.03 lattice units

Up/down sea quark masses

$\mathbf{2 4} \times \mathbf{6 4}$	
latt. units	$m_{\pi}(\mathrm{MeV})$
0.03	626
0.02	558
0.01	345
0.005	331

$\mathbf{3 2} \times \mathbf{6 4}$	
latt. units	$m_{\pi}(\mathrm{MeV})$
0.008	~ 420
0.006	~ 360
0.004	~ 300

Highly preliminary data as datasets only partially complete

Measurement of B_{K}

Method comparison

$$
24^{3} \times 64 \quad 32^{3} \times 64
$$

Method comparison

$$
24^{3} \times 64 \quad 32^{3} \times 64
$$

- 2 gauge-fixed wall sources at $t=5,59$ for propagators

Method comparison

$$
24^{3} \times 64 \quad 32^{3} \times 64
$$

- 2 gauge-fixed wall sources at $t=5$, 59 for propagators
- Use $p+a$ boundary conditions \rightarrow removes unwanted round-the-world contributions.

Method comparison

$$
24^{3} \times 64 \quad 32^{3} \times 64
$$

- 2 gauge-fixed wall sources at $t=5$, 59 for propagators
- Use $p+a$ boundary conditions \rightarrow removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

Method comparison

$24^{3} \times 64$

- 2 gauge-fixed wall sources at $t=5,59$ for propagators
- Use $p+a$ boundary conditions \rightarrow removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$32^{3} \times 64$

- 1 gauge-fixed wall source at $t=0$

Method comparison

$$
24^{3} \times 64
$$

- 2 gauge-fixed wall sources at $t=5$, 59 for propagators
- Use $p+a$ boundary conditions \rightarrow removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$$
32^{3} \times 64
$$

- 1 gauge-fixed wall source at $t=0$
- Use $p+a$ and $p-a$ boundary conditions \rightarrow gives forwards and backwards propagating quarks.

Method comparison

$$
24^{3} \times 64
$$

- 2 gauge-fixed wall sources at $t=5$, 59 for propagators
- Use $p+a$ boundary conditions \rightarrow removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$$
32^{3} \times 64
$$

- 1 gauge-fixed wall source at $t=0$
- Use $p+a$ and $p-a$ boundary conditions \rightarrow gives forwards and backwards propagating quarks.
- Costs 2 inversions per configuration.

B_{K} example plateaux

$24^{3} \times 64 m_{l}=0.005$

Preliminary $32^{3} \times 64 m_{l}=0.004$

The chiral extrapolation of B_{K}

B_{K} chiral fit forms

- We use NLO $S U(2) \times S U(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.

B_{K} chiral fit forms

- We use NLO $S U(2) \times S U(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- Kaon sector is coupled to $S U(2)$ soft pion loops at lowest order in non-relativistic expansion

B_{K} chiral fit forms

- We use NLO $S U(2) \times S U(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- Kaon sector is coupled to $S U(2)$ soft pion loops at lowest order in non-relativistic expansion
\rightarrow direct connection to $\mathrm{HM} \chi$ PT

B_{K} chiral fit forms

- We use NLO $S U(2) \times S U(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
- Kaon sector is coupled to $S U(2)$ soft pion loops at lowest order in non-relativistic expansion
\rightarrow direct connection to $\mathrm{HM} \chi$ PT
- 24^{3} analysis [Allton et al arXiv:0804.0473] indicated $S U(3) \times S U(3) \mathrm{PQChPT}$ has large higher order corrections and doesn't fit data well up to physical strange quark mass (R. Mawhinney).

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters:

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$
- Use simultaneous pure $S U(2) \times S U(2) \mathrm{PQChPT}$ fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)

$S U(2) \times S U(2)$ PQChPT fit form for B_{K}

$$
\begin{aligned}
B_{K}=B_{K}^{0}[1 & +\frac{2 B\left(m_{d}+m_{\mathrm{res}}\right) c_{0}}{f^{2}}+\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right) c_{1}}{f^{2}} \\
& \left.-\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{32 \pi^{2} f^{2}} \log \left(\frac{2 B\left(m_{y}+m_{\mathrm{res}}\right)}{\Lambda_{\chi}^{2}}\right)\right]
\end{aligned}
$$

- 5 free parameters: $B_{K}^{0}, B, f, c_{0}, c_{1}$
- Use simultaneous pure $S U(2) \times S U(2) \mathrm{PQChPT}$ fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)
\rightarrow perform frozen 3-parameter fit to B_{K}

Simultaneous PQChPT fits to F_{PS} and $M_{\mathrm{PS}}: f_{\mathrm{PS}}$

$24^{3} \times 64$

$32^{3} \times 64$

Simultaneous PQChPT fits to F_{PS} and $M_{\mathrm{PS}}: f_{\mathrm{PS}}$

$$
32^{3} \times 64
$$

- For fixed m_{l} chiral fit forms non-analytic as $m_{x / y} \rightarrow 0$

Simultaneous PQChPT fits to F_{PS} and $M_{\mathrm{PS}}: f_{\mathrm{PS}}$

$$
32^{3} \times 64
$$

- For fixed m_{l} chiral fit forms non-analytic as $m_{x / y} \rightarrow 0$
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along unitary curve $m_{x}=m_{y}=m_{l} \rightarrow 0$ to obtain physical f_{PS}.

Simultaneous PQChPT fits to F_{PS} and $M_{\mathrm{PS}}: f_{\mathrm{PS}}$

$$
32^{3} \times 64
$$

- For fixed m_{l} chiral fit forms non-analytic as $m_{x / y} \rightarrow 0$
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along unitary curve $m_{x}=m_{y}=m_{l} \rightarrow 0$ to obtain physical f_{PS}.
- Unitary curve is finite valued at chiral limit.

Simultaneous PQChPT fits to F_{PS} and $M_{\mathrm{PS}}: M_{\mathrm{PS}}$

$32^{3} \times 64$

PQChPT fits to B_{K}

- Unitary curve is fixed $m_{s}, m_{x}=m_{l} \rightarrow m_{l}^{\text {phys }}$

PQChPT fits to B_{K}

- Unitary curve is fixed $m_{s}, m_{x}=m_{l} \rightarrow m_{l}^{\text {phys }}$
$24^{3} \times 64 B_{K}$ chiral limit results - Allton et al [arXiv:0804.0473]
- $24^{3} \times 64 B_{K}^{\text {lat }}=0.565(10)$.
$24^{3} \times 64 B_{K}$ chiral limit results - Allton et al [arXiv:0804.0473]
- $24^{3} \times 64 B_{K}^{\text {lat }}=0.565(10)$.
- $32^{3} \times 64$ extrapolation not yet available, dataset only partially complete
- Stat uncertainties in data sets, unknown physical quark masses

The non-perturbative renormalisation of B_{K}

Why NPR?

- Lattice perturbative (DWF) calculations exist but:

Why NPR?

- Lattice perturbative (DWF) calculations exist but:
- exist only at low order

Why NPR?

- Lattice perturbative (DWF) calculations exist but:
- exist only at low order
- are poorly convergent

Why NPR?

- Lattice perturbative (DWF) calculations exist but:
- exist only at low order
- are poorly convergent
- involve prescription dependent ambiguities such as MF improvement

Why NPR?

- Lattice perturbative (DWF) calculations exist but:
- exist only at low order
- are poorly convergent
- involve prescription dependent ambiguities such as MF improvement
- Use Rome-Southampton RI/MOM scheme

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.
- Therefore can use Λ_{A} or Λ_{V} as a measure of $\frac{Z_{q}}{Z_{A}}$.

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.
- Therefore can use Λ_{A} or Λ_{V} as a measure of $\frac{Z_{q}}{Z_{A}}$.
- Λ_{A} and Λ_{V} expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.
- Therefore can use Λ_{A} or Λ_{V} as a measure of $\frac{Z_{q}}{Z_{A}}$.
- Λ_{A} and Λ_{V} expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_{A} \neq \Lambda_{V}$ at 2% level

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.
- Therefore can use Λ_{A} or Λ_{V} as a measure of $\frac{Z_{q}}{Z_{A}}$.
- Λ_{A} and Λ_{V} expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_{A} \neq \Lambda_{V}$ at 2% level \rightarrow difference caused by kinematic choice : Exceptional momentum configuration

Bilinear vertices

- $Z_{V}=Z_{A}$ due to good chiral symmetry
- At high momenta, $\Lambda_{A}=\Lambda_{V}=\frac{Z_{q}}{Z_{A}}=\frac{Z_{q}}{Z_{V}}$ should hold.
- Therefore can use Λ_{A} or Λ_{V} as a measure of $\frac{Z_{q}}{Z_{A}}$.
- Λ_{A} and Λ_{V} expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_{A} \neq \Lambda_{V}$ at 2% level \rightarrow difference caused by kinematic choice : Exceptional momentum configuration
\rightarrow Gives weak $1 / p^{2}$ suppression of low energy chiral symmetry breaking.

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^{2} \rightarrow \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^{2} \rightarrow \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_{1} \neq p_{2}$ this is the entire graph.

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^{2} \rightarrow \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_{1} \neq p_{2}$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^{2} \rightarrow \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_{1} \neq p_{2}$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:
\rightarrow Low energy subgraph not contained within circled subgraph

Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^{2} \rightarrow \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_{1} \neq p_{2}$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:
\rightarrow Low energy subgraph not contained within circled subgraph
\rightarrow Adding extra external legs to circled subgraph increases suppression of the graph

Chiral symmetry breaking and exceptional momenta

- However in case $p_{2}-p_{1}=0$ then high momenta do not enter internal subgraphs

Chiral symmetry breaking and exceptional momenta

- However in case $p_{2}-p_{1}=0$ then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression

Chiral symmetry breaking and exceptional momenta

- However in case $p_{2}-p_{1}=0$ then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression
- This is an exceptional momentum configuration

Chiral symmetry breaking and exceptional momenta

- However in case $p_{2}-p_{1}=0$ then high momenta do not enter internal subgraphs
- Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression
- This is an exceptional momentum configuration
- Chiral symmetry breaking induces difference between Λ_{A} and $\Lambda_{V} \rightarrow$ use $\frac{1}{2}\left(\Lambda_{A}+\Lambda_{V}\right) \approx \frac{Z_{q}}{Z_{A}}$

B_{K} NPR with $\mathrm{RI} / \mathrm{MOM}$ and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.

B_{K} NPR with $\mathrm{RI} / \mathrm{MOM}$ and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
- Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{\mathcal{O}_{V V+A A}}$

B_{K} NPR with $\mathrm{RI} / \mathrm{MOM}$ and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
- Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{\mathcal{O}_{V V+A A}}$
- Renormalisation condition: Fix to tree level value at $\mu^{2}=p^{2}$

$$
\frac{Z_{V V+A A}}{Z_{q}^{2}} \Lambda_{\mathcal{O}_{V V+A A}}=\mathcal{O}_{V V+A A}^{\text {tree }}
$$

B_{K} NPR with $\mathrm{RI} / \mathrm{MOM}$ and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
- Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{\mathcal{O}_{V+A A}}$
- Renormalisation condition: Fix to tree level value at $\mu^{2}=p^{2}$

$$
\frac{Z_{V V+A A}}{Z_{q}^{2}} \Lambda_{\mathcal{O}_{V V+A A}}=\mathcal{O}_{V V+A A}^{\text {tree }}
$$

- Define

$$
\begin{aligned}
Z_{B K}^{R I / M O M} & \equiv \frac{Z_{V V+A A}}{Z_{A}^{2}} \\
& =\left(\frac{Z_{q}^{2}}{Z_{A}^{2}}\right) \frac{Z_{V V+A A}}{Z_{q}^{2}}
\end{aligned}
$$

B_{K} NPR with $\mathrm{RI} / \mathrm{MOM}$ and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
- Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{\mathcal{O}_{V+A A}}$
- Renormalisation condition: Fix to tree level value at $\mu^{2}=p^{2}$

$$
\frac{Z_{V V+A A}}{Z_{q}^{2}} \Lambda_{\mathcal{O}_{V V+A A}}=\mathcal{O}_{V V+A A}^{\text {tree }}
$$

- Define

$$
\begin{aligned}
Z_{B K}^{R I / M O M} & \equiv \frac{Z_{V V+A A}}{Z_{A}^{2}} \\
& =\left(\frac{Z_{q}^{2}}{Z_{A}^{2}}\right) \frac{z_{V V+A A}}{Z_{q}^{2}}
\end{aligned}
$$

- Use $\frac{1}{2}\left(\Lambda_{A}+\Lambda_{V}\right) \approx \frac{Z_{q}}{Z_{A}}$

Method comparison

$$
24^{3} \times 32
$$

$32^{3} \times 64$

Method comparison

$$
16^{3} \times 32 \quad 32^{3} \times 64
$$

- Use point sources, 4 quark vertex formed at source location.

Method comparison

$$
16^{3} \times 32 \quad 32^{3} \times 64
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.

Method comparison

$$
16^{3} \times 32
$$

$$
32^{3} \times 64
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

Method comparison

$$
16^{3} \times 32
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$32^{3} \times 64$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)

Method comparison

$$
16^{3} \times 32
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$$
32^{3} \times 64
$$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.

Method comparison

$$
16^{3} \times 32
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$$
32^{3} \times 64
$$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.
- Volume source has fixed momentum as phase must be applied to source lattice sites before inversion.

Method comparison

$$
16^{3} \times 32
$$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_{l}=0.03,0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$$
32^{3} \times 64
$$

- Currently calculated 5 independent momenta (10 total) on 10 configurations on our $m_{l}=0.006$ and 0.004 ensembles

$Z_{B K}^{R I / M O M}(\mu)$

$$
16^{3} \times 32
$$

$32^{3} \times 64$

$Z_{B K}^{R I / M O M}(\mu)$

$16^{3} \times 32$

$32^{3} \times 64$

$Z_{B K}^{R I / M O M}(\mu)$

$16^{3} \times 32$

Chiral extrapolation $-32^{3} \times 64$

- For each $Z_{B K}(\mu)$, perform a linear chiral extrapolation to $m=-m_{\mathrm{res}}$

Chiral extrapolation $-32^{3} \times 64$

- For each $Z_{B K}(\mu)$, perform a linear chiral extrapolation to $m=-m_{\mathrm{res}}$

- 32^{3} lever-arm for extrapolation small compared to extrapolation distance

Chiral extrapolation $-32^{3} \times 64$

- For each $Z_{B K}(\mu)$, perform a linear chiral extrapolation to $m=-m_{\mathrm{res}}$

- 32^{3} lever-arm for extrapolation small compared to extrapolation distance
\rightarrow Future: Add $m_{l}=0.008$ dataset

Exceptional momenta systematic error

$$
32^{3} \times 64
$$

- 32^{3} stat errors small compared to systematic error from exceptional momenta.

Exceptional momenta systematic error

$$
32^{3} \times 64
$$

- 32^{3} stat errors small compared to systematic error from exceptional momenta.
- On 24^{3} we attributed a 1.5% sys error to this alone.

Exceptional momenta systematic error

$$
32^{3} \times 64
$$

- 32^{3} stat errors small compared to systematic error from exceptional momenta.
- On 24^{3} we attributed a 1.5% sys error to this alone.
- Difference greatly reduced by using non-exceptional momentum configuration $p_{1} \neq p_{2}$

Exceptional momenta systematic error

$$
32^{3} \times 64
$$

- 32^{3} stat errors small compared to systematic error from exceptional momenta.
- On 24^{3} we attributed a 1.5% sys error to this alone.
- Difference greatly reduced by using non-exceptional momentum configuration $p_{1} \neq p_{2}$
- Unfortunately no perturbative calculation available for non-exceptional (Y. Aoki)

Removal of lattice artefacts

- Divide out perturbative running: Quantity is scale invariant up to lattice artefacts

Removal of lattice artefacts

- Divide out perturbative running: Quantity is scale invariant up to lattice artefacts
- Expect quadratic dependence of lattice artefacts on lattice spacing
\rightarrow fit to form $Z_{B K}^{S I}+B(a \mu)^{2}$

Extrapolation of $Z_{B K}^{S!}$

$16^{3} \times 32$
$32^{3} \times 64$

Extrapolation of $Z_{B K}^{S!}$

$16^{3} \times 32$

$32^{3} \times 64$

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{M S}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
- Sys errors:

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
- Sys errors:
- $\mathcal{O}\left(\alpha_{s}\right) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{M S}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
- Sys errors:
- $\mathcal{O}\left(\alpha_{s}\right) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
- $\Rightarrow 0.0007$ unphysical strange mass correction

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{M S}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
- Sys errors:
- $\mathcal{O}\left(\alpha_{s}\right) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
- $\Rightarrow 0.0007$ unphysical strange mass correction
- $\Rightarrow 0.0131$ correction for use of exceptional momenta

$24^{3} \times 64$ result - Aoki et al [arXiv:0712.1061]

- Reapply $\mathrm{RI} / \mathrm{MOM}$ perturbative running to $Z_{B K}^{S I}$ and scale to conventional $\mu=2 \mathrm{GeV}$.
- Apply conversion factor $Z_{B K}^{R I / M O M} \rightarrow Z_{B K}^{\overline{M S}}$
- $Z_{B K}^{\overline{M S}}(2 \mathrm{GeV})=0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
- Sys errors:
- $\mathcal{O}\left(\alpha_{s}\right) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
- $\Rightarrow 0.0007$ unphysical strange mass correction
- $\Rightarrow 0.0131$ correction for use of exceptional momenta
- Current $32^{3} Z_{B K}^{\overline{M S}}$ stat error ~ 0.0013.

Conclusions and Outlook

$24^{3} \times 64$ final value and 32^{3} outlook

- Combining chirally extrapolated B_{K} with aforementioned $Z_{B K}$ result

$24^{3} \times 64$ final value and 32^{3} outlook

- Combining chirally extrapolated B_{K} with aforementioned $Z_{B K}$ result

$$
\begin{aligned}
& \rightarrow B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.524(10)_{\text {stat }}(13)_{\mathrm{ren}}(25)_{\mathrm{sys}} \\
& \quad[\operatorname{arXiv}: 0804.0473]
\end{aligned}
$$

$24^{3} \times 64$ final value and 32^{3} outlook

- Combining chirally extrapolated B_{K} with aforementioned $Z_{B K}$ result $\rightarrow B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.524(10)_{\text {stat }}(13)_{\text {ren }}(25)_{\text {sys }}$ [arXiv:0804.0473]
- Improved techniques for 32^{3} in use; results expected soon: Watch this space!

