Motivation	Setup	Methods 0000000	Systematic error analysis	Final Result

The light hadron spectrum II

Ch. Hoelbling with S. Durr Z. Fodor J. Frison S. Katz S. Krieg T. Kurth L. Lellouch Th. Lippert K. Szabo G. Vulvert

Lattice 2008, Williamsburg

▲御▶ ▲理▶ ▲理▶

Motivation	Setup	Methods 0000000	Systematic error analysis	Final Result
Outline				

Methods

- Physical quark mass extra-/interpolation
- Continuum extrapolation
- Exponential finite volume effects
- Resonance effects
- 4 Systematic error analysis

5 Final Result

個 と く ヨ と く ヨ と

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

WHY THE LIGHT HADRON SPECTRUM?

- Goal:
 - Firmly establish (or invalidate?) QCD as the theory of strong interaction in the low energy region
- Method:
 - Post-diction of light hadron spectrum
 - Octet baryons
 - Decuplet baryons
 - Vector mesons
- Challenge:
 - Minimize and control all systematics
 - 2+1 dynamical fermion flavors (→S. Krieg)
 - Physical quark masses
 - Continuum
 - Infinite volume (treatment of resonant states)

Motivation	Setup	Methods	Systematic error analysis	Final Result
SETUP				

Goal:

• Stable formulation/algorithm for $N_f = 2 + 1$ QCD Method:

- Tree level Symanzik improved gauge action
- Tree level O(a) improved smeared Wilson fermions
 - 6-step stout-smearing, $\rho = 0.11$
- Stable HMC-RHMC algorithm
 - Multiple timescale omelyan integrator, mass preconditioning, mixed precision solver (Sexton, Weingarten, 1992; Hasenbusch, 2001; Omelyan, 2003; Urbach et. al. 2006; BMW 2008)

stable, excellent scaling (→S. Krieg, T. Kurth)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NЛ	2	T I I	v	a	Ŧ1.	2	n
	U	u	v	a	u	U	

Methods

Systematic error analysis

Final Result

Physical quark mass extra-/interpolation

QUARK MASS DEPENDENCE

Goal:

• Extra-/Interpolate M_X (baryon/vector meson mass) to physical point (M_{π} , M_K)

Method:

- Use M_{Ξ} or M_{Ω} to set the scale
- Variables to parametrize M_{π}^2 and M_K^2 dependence of M_X :
 - Use bare masses aM_y , $y \in \{X, \pi, K\}$ and a (bootstrapped)
 - Use dimensionless ratios $r_y := \frac{M_y}{M_{\Xi}/\Omega}$ (cancellations)

We use both procedures → systematic error

NЛ	nt	11/	-21	11	n	n
	υı		a			

Methods

Systematic error analysis

・ロト ・四ト ・ヨト ・ヨト

2

Final Result

Physical quark mass extra-/interpolation

QUARK MASS DEPENDENCE (ctd.)

Method (ctd.):

• Parametrization: $M_X = M_X^{(0)} + \alpha M_\pi^2 + \beta M_K^2$ + higher orders

- Leading order sufficinet for M_K^2 dependence
- We include higher order term in M_{π}^2
 - Next order χ PT (around $M_{\pi}^2 = 0$): $\propto M_{\pi}^3$
 - Taylor expansion (around $M_{\pi}^2 \neq 0$): $\propto M_{\pi}^4$

Both procedures fine → systematic error No sensitivity to any order beyond these

- Vector mesons: higher orders not significant
- Baryons: higher orders significant
 - Restrict fit range to further estimate systematics:
 - full range, $M_{\pi} < 550/450 {\rm MeV}$

We use all 3 ranges → systematic error

Motivation	Setup	Methods	Systematic error analysis	Final Result
Physical quark ma	ass extra-/interpolation	on		
CHIRA	LFIT			

Ch. Hoelbling (Wuppertal) The light hadron spectrum II

ĸл	oti		3	**	2	n
IVI	υu	v	a	u	U	

Methods

Systematic error analysis

Final Result

Physical quark mass extra-/interpolation

CHIRAL FIT USING RATIOS

Methods

Systematic error analysis

Final Result

Continuum extrapolation

CONTINUUM EXTRAPOLATION

Goal:

• Eliminate discretization effects

Method:

- Formally in our action: $O(\alpha_s a)$ and $O(a^2)$
- Discretization effects are tiny
 - Not possible to distinguish between O(a) and $O(a^2)$
 - →include both in systematic error

Methods ○○○○●○

Exponential finite volume effects

FINITE VOLUME EFFECTS FROM VIRTUAL PIONS

Goal:

• Eliminate virtual pion finite V effects

Method:

- Best practice: use large V
 - We use $M_{\pi}L \gtrsim$ 4 (and one point to study finite *V*)

• Effects are tiny and well described by $\frac{M_X(L) - M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{M_\pi L} \quad \text{(Colangelo et. al., 2005)}$

Ch. Hoelbling (Wuppertal) The light hadron spectrum II

Methods

Resonance effects

FINITE VOLUME EFFECTS IN RESONANCES

Goal:

• Eliminate spectrum distortions from resonances mixing with scattering states

Method:

- Stay in region where resonance is ground state
 - Otherwise no sensitivity to resonance mass in ground state
- Systematic treatment (Lüscher, 1985-1991)
 - Conceptually satisfactory basis to study resonances
 - Coupling as parameter (related to width)
- Fit for coupling (assumed constant, related to width)
 - No sensitivity on width (compatible within large error)
 - Small but dominant FV correction for light resonances

SYSTEMATIC UNCERTAINTIES

Goal:

Accurately estimate total systematic error

Method:

- We account for all the above mentioned effects
- When there are a number of sensible ways to proceed, we take them: Complete analysis for each of
 - 18 fit range combinations
 - ratio/nonratio fits (r_X resp. M_X)
 - O(a) and O(a²) discretization terms
 - NLO χ PT M_{π}^3 and Taylor M_{π}^4 chiral fit
 - 3 χ fit ranges for baryons: $M_{\pi} < 650/550/450$ MeV

resulting in 432 (144) predictions for each baryon (vector meson) mass with each 2000 bootstrap samples for each Ξ and Ω scale setting

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

SYSTEMATIC UNCERTAINTIES II

Method (ctd.):

- Weigh each of the 432 (144) central values by fit quality Q
 - Median of this distribution → final result
 - Central 68% → systematic error
- Statistical error from bootstrap of the medians

Motivation	Setup	Methods

Systematic error analysis

Final Result

THE LIGHT HADRON SPECTRUM

Ch. Hoelbling (Wuppertal) The light hadron spectrum II

		\mathbf{a}	 110	\mathbf{n}	
wouvalior		U	 VC	υι	VI

Methods

Systematic error analysis

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

æ

Final Result

Mass predictions in GeV

	Exp.	Ξ scale	Ω scale
ρ	0.775	0.775(29)(13)	0.778(30)(33)
K *	0.894	0.906(14)(4)	0.907(15)(8)
Ν	0.939	0.936(25)(22)	0.953(29)(19)
٨	1.116	1.114(15)(5)	1.103(23)(10)
Σ	1.191	1.169(18)(15)	1.157(25)(15)
Ξ	1.318		1.317(16)(13)
Δ	1.232	1.248(97)(61)	1.234(82)(81)
Σ*	1.385	1.427(46)(35)	1.404(38)(27)
Ξ*	1.533	1.565(26)(15)	1.561(15)(15)
Ω	1.672	1.676(20)(15)	

æ