The XXVI International Symposium on Lattice Field Theory (Lattice 2008), Williamsburg, Virginia, USA, 2008 July 14–19.

Phase diagram and EoS from a Taylor expansion of the pressure

Christian Schmidt Universität Bielefeld

RBC-Bielefeld:

M. Cheng, N.H. Christ, S.Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R.D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, CS, W. Söldner and T. Umeda.

The XXVI International Symposium on Lattice Field Theory (Lattice 2008), Williamsburg, Virginia, USA, 2008 July 14–19.

Outline

- Introduction
- Taylor expansion of the pressure
- The radius of convergence and the QCD critical point
- The isentropic equation of state
- Summary

The phase diagram of QCD

- Fluctuations of B, S, Q can be measured experimentally and indicate criticality
- Lattice at $\mu = 0$ \longrightarrow RHIC, LHC
- Lattice at $\mu > 0$ \longrightarrow RHIC at low energies, FAIR@GSI

• Taylor expansion in $\mu_{B,S,Q}$

QCD is naturally formulated with quark chemical potentials $\mu_{u,d,s}$

we start from Taylor expansion of the pressure

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

- use unbiased, noisy estimators to calculate $c_{i,j,k}^{u,d,s}$ \longrightarrow see C. Miao, CS, PoS (Lattice 2007) 175.
- line of constant physics: $m_q = m_s/10$ (physical strange quark mass)
- $egin{array}{lll} egin{array}{lll} egin{arra$
- action: improved staggered (p4fat3)

• Taylor expansion in $\mu_{B,S,Q}$

QCD is naturally formulated with quark chemical potentials $\mu_{u,d,s}$

we start from Taylor expansion of the pressure

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

• expansion coefficients $c_{i,j,k}^{u,d,s}$ are related to B,S,Q-fluctuations

$$n_{B} = \frac{\partial(p/T^{4})}{\partial(\mu_{B}/T)} = \frac{1}{3}(n_{u} + n_{d} + n_{s}) \qquad \mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q}$$

$$n_{S} = \frac{\partial(p/T^{4})}{\partial(\mu_{S}/T)} = -n_{s} \qquad \mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q}$$

$$n_{Q} = \frac{\partial(p/T^{4})}{\partial(\mu_{Q}/T)} = \frac{1}{3}(2n_{u} - n_{d} - n_{s}) \qquad \mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

ullet choice of $\mu_u\equiv\mu_d$ is equivalent to $\mu_Q\equiv 0$

• Current statistics

$$N_{ au} = 4$$

β	#Conf.	#Sep.	#Ran.
3.240	1013	20	480
3.280	1550	30	480
3.290	1550	30	480
3.300	1250	30	384
3.315	475	60	384
3.320	475	60	384
3.335	264	60	384
3.351	365	30	384
3.410	199	60	192
3.460	302	60	96
3.610	618	10	48

$$N_{ au}=6$$

$oldsymbol{eta}$	#Conf.	#Sep.	#Ran.
3.410	800	10	400
3.420	888	10	400
3.430	850	10	400
3.445	924	10	400
3.455	672	10	350
3.460	600	10	200
3.470	571	10	150
3.490	450	10	150
3.510	670	10	100
3.570	540	10	50
3.690	350	10	50
3.760	345	10	50

 \rightarrow work in progress !

Taylor expansion of the pressure

7

• Consequences for the phase diagram: the radius of convergence

The radius of convergence can be estimated from the Taylor coefficients of the pressure:

$$\rho = \lim_{n \to \infty} \rho_n$$

with

$$ho_n = \sqrt{rac{c_n^B}{c_{n+2}^B}}$$

• for $\ T>T_c, \ \
ho_n o \infty$

• for $\ T < T_c, \
ho_n$ is bound by the transition line

 \longrightarrow look for non-monotonic behavior in the radius of convergence

• Consequences for the phase diagram: the radius of convergence

→ first hint for a critical region at small masses ?

 higher order approximations are needed to locate the critical point

• Consequences for the phase diagram: the radius of convergence

first hint for a critical region • higher order approximations are at small masses ? (only at Nt=4 ?) needed to locate the critical point

• Consequences for the phase diagram: the radius of convergence

- First hint for a critical region higher order approximations are at small masses ? (only at Nt=4 ?) needed to locate the critical point
 - $ightarrow
 ho_4$ (and maybe ho_6) are needed in higher precision

• Consequences for the phase diagram: the radius of convergence

- first hint for a critical region
 higher order approximations are
 at small masses ? (only at Nt=4 ?)
 needed to locate the critical point.
 - $ightarrow
 ho_4$ (and maybe ho_6) are needed in higher precision

• Consequences for the phase diagram: the radius of convergence

• unexpected behavior in the radius of convergence of the pressure expansion in μ_I/T ?

pion-condensation phase should show up in the profile

Bulk thermodynamics at $\mu = 0$

• Pressure, Energy and Entropy: the Oth-order

M. Cheng et al. [RBC-Bielefeld], PRD 77 (2008) 014511.

• p/T^4 from integrating over $(\epsilon-3p)/T^5$

 \rightarrow systematic error from starting the integration at $T_0 = 100 MeV$ with $p(T_0) = 0$

 \longrightarrow use HRG to estimate systematic error: $\left[p(T_0)/T_0^4
ight]_{HRG} pprox 0.265$

The EoS at non zero density

• Taylor expansion of the trace anomaly

$$\frac{\epsilon - 3p}{T^4} = \sum_{n=0}^{\infty} c'_n{}^B(T, m_l, m_s) \left(\frac{\mu_B}{T}\right)^r$$

ightarrow Coefficients are defined by $c_n'{}^B(T,m_l,m_s) = T rac{dc_n^B(T,m_l,m_s)}{dT}$

 \rightarrow "local version" is work in progress

$$c_{n}'^{B}(T,\hat{m}_{l},\hat{m}_{s}) = -a\frac{d\beta}{da}\frac{dc_{n}^{B}(T,\hat{m}_{l},\hat{m}_{s})}{d\beta} - a\frac{d\hat{m}_{l}}{da}\frac{dc_{n}^{B}(T,\hat{m}_{l},\hat{m}_{s})}{d\hat{m}_{l}} - a\frac{d\hat{m}_{s}}{da}\frac{dc_{n}^{B}(T,\hat{m}_{l},\hat{m}_{s})}{d\hat{m}_{s}}$$

Taylor expansion of energy and entropy densities

$$\frac{\epsilon}{T^4} = \sum_{n=0}^{\infty} \left(3c_n^B(T, m_l, m_s) + c_n'^B(T, m_l, m_s) \right) \left(\frac{\mu_B}{T}\right)^n \equiv \sum_{n=0}^{\infty} \epsilon_n^B \left(\frac{\mu_B}{T}\right)^n$$

$$\frac{s}{T^3} = \sum_{n=0}^{\infty} \left((4-n)c_n^B(T, m_l, m_s) + c_n'^B(T, m_l, m_s) \right) \left(\frac{\mu_B}{T}\right)^n \equiv \sum_{n=0}^{\infty} s_n^B \left(\frac{\mu_B}{T}\right)^n$$

• Coefficients of the μ_B -expansion

ightarrow pattern of ϵ_n and s_n is that of c_{n+2}

The isentropic EoS

- Isentropic trajectories
 - \rightarrow solve numerically for $S(T, \mu_B)/N_B(T, \mu_B) = \text{const.}$
 - → 6th order is small at S/N=30 (trajectories inside estimated radius of
 - convergence)
 - calculate pressure and energy density along isentropic trajectories
 - ightarrow pressure and energy density increase by pprox 10% for S/N=30.

The isentropic EoS

- Isentropic trajectories
 - \rightarrow solve numerically for $S(T, u_{-})/N_{-}(T, u_{-}) =$
 - $S(T,\mu_B)/N_B(T,\mu_B) = \text{const.}$
 - → 6th order is small at S/N=30 (trajectories inside estimated radius of convergence)
 - → calculate pressure and energy density along isentropic trajectories
 - ightarrow pressure and energy density increase by pprox 10% for S/N=30.

The isentropic EoS

- Isentropic trajectories
 - \rightarrow solve numerically for $S(T, \mu_B)/N_B(T, \mu_B) = \text{const.}$
 - → 6th order is small at S/N=30 (trajectories inside estimated radius of convergence)
 - → calculate pressure and energy density along isentropic trajectories
 - ightarrow pressure and energy density increase by pprox 10% for S/N=30.

→ The EoS along isentropic trajectories is fairly independent on S/N. Leading order corrections:

$$\frac{p}{\epsilon} = \frac{1}{3} - \frac{1}{3} \frac{\epsilon_0 - 3p_0}{\epsilon_0} \left(1 + \left[\frac{c_2'}{\epsilon_0 - 3p_0} - \frac{\epsilon_2}{\epsilon_0} \right] \left(\frac{\mu_B}{T} \right)^2 \right)$$

Summary

- Cut-off effect for Taylor expansion coefficients are small and sizable only in the transition region (similar to the interaction measure e-3p)
- We find non-monotonic behavior in the radius of convergence for $N_{ au} = 4$ which could be a first hint for a critical region in the T, μ_B - plane. This needs to be confirmed by $N_{ au} = 6$.
- Isentropic trajectories show non-monotonic behavior for $N_{ au}=4$. This needs to be confirmed by $N_{ au}=6$.
- Finite density correction for EoS are small, pressure and energy density increase by $\approx 10\%$ for S/N=30 (AGS/FAIR), corrections cancel to large extent in p/ϵ .
- Taylor expansion method will provide valuable input for HIC phenomenology.