Towards a determination of $c_{S W}$ using Numerical Stochastic Perturbation Theory (NSPT)

Christian Torrero and Gunnar Bali

Department of Theoretical Physics
University of Regensburg

XXVI International Symposium on Lattice Field Theories Williamsburg, 14 July 2008

Outline

(1) The second-loop contribution to the $c_{s w}$ coefficient

- Basics on NSPT
- The observable
- How to get the desired coefficient
(2) Higher-order integrators for NSPT
- Algorithms
- The non-Abelian shift
- A few, preliminary results
(3) Summary and outlook

Outline

(1) The second-loop contribution to the $c_{s w}$ coefficient

- Basics on NSPT
- The observable
- How to get the desired coefficient
(2) Higher-order integrators for NSPT
- Algorithms
- The non-Abelian shift
- A few, preliminary resultsSummary and outlook

The second-loop contribution to the $c_{s w}$ coefficient
Higher-order integrators for NSPT
Summary and outlook

Basics on NSPT
The observable
How to get the desired coefficient

The starting point of Numerical Stochastic Perturbation Theory (NSPT) is given by Stochastic Quantization.
[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

- Introduction of a stochastic time t as a new degree of freedom

- Langevin equation with gaussian noise

All this results in
$\left\langle O\left[\phi_{1}\left(x_{1}, t\right), \phi_{2}\left(x_{2}, t\right), \ldots\right]\right\rangle_{\eta} \xrightarrow{t \rightarrow+\infty} \frac{1}{Z} \int[D \phi] O\left[\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right), \ldots\right] e^{-S[\phi]}$

The starting point of Numerical Stochastic Perturbation Theory (NSPT) is given by Stochastic Quantization.
[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

- Introduction of a stochastic time t as a new degree of freedom
$\phi(x) \rightarrow \phi(x, t)$
- Langevin equation with gaussian noise

All this results in
$\left\langle O\left[\phi_{1}\left(x_{1}, t\right), \phi_{2}\left(x_{2}, t\right), \ldots\right]\right\rangle_{\eta} \xrightarrow{t \rightarrow+\infty} \frac{1}{Z} \int[D \phi] O\left[\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right), \ldots\right] e^{-S[\phi]}$

The starting point of Numerical Stochastic Perturbation Theory (NSPT) is given by Stochastic Quantization.
[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

- Introduction of a stochastic time t as a new degree of freedom

$$
\phi(x) \rightarrow \phi(x, t) .
$$

- Langevin equation with gaussian noise

All this results in

The starting point of Numerical Stochastic Perturbation Theory (NSPT) is given by Stochastic Quantization.
[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

- Introduction of a stochastic time t as a new degree of freedom

$$
\phi(x) \rightarrow \phi(x, t) .
$$

- Langevin equation with gaussian noise

$$
\begin{aligned}
\frac{\partial \phi(x, t)}{\partial t} & =-\frac{\partial S[\phi]}{\partial \phi(x, t)}+\eta(x, t), \\
\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle & =2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) .
\end{aligned}
$$

All this results in

$O\left[\phi_{1}\left(x_{1}, t\right), \phi_{2}\left(x_{2}, t\right)\right.$,

The starting point of Numerical Stochastic Perturbation Theory (NSPT) is given by Stochastic Quantization.
[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

- Introduction of a stochastic time t as a new degree of freedom

$$
\phi(x) \rightarrow \phi(x, t)
$$

- Langevin equation with gaussian noise

$$
\begin{aligned}
\frac{\partial \phi(x, t)}{\partial t} & =-\frac{\partial S[\phi]}{\partial \phi(x, t)}+\eta(x, t), \\
\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle & =2 \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) .
\end{aligned}
$$

All this results in

$$
\left\langle O\left[\phi_{1}\left(x_{1}, t\right), \phi_{2}\left(x_{2}, t\right), \ldots\right]\right\rangle_{\eta} \xrightarrow{t \rightarrow+\infty} \frac{1}{Z} \int[D \phi] O\left[\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right), \ldots\right] e^{-S[\phi]} .
$$

For lattice gauge variables, the Langevin equation is modified as

$$
\frac{\partial}{\partial t} U_{\mu}(x, t)=-i \sum_{A} T^{A}\left[\nabla_{x, \mu, A} S_{G}[U]+\eta_{\mu}^{A}(x, t)\right] U_{\mu}(x, t)
$$

where the group derivative is defined as

$$
\nabla_{x, \mu, A} \mathcal{F}[U]=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left(\mathcal{F}\left[e^{i \alpha T^{A}} U_{\mu}(x), U^{\prime}\right]-\mathcal{F}[U]\right)
$$

Perturbation Theory is introduced by means of a formal expansion like

which, plugged into Langevin equation, gives a hierarchical system of differential equations.

The stochastic time can now be discretized as $t=n \tau$ and the system numerically integrated: this is the core of NSPT.

For lattice gauge variables, the Langevin equation is modified as

$$
\frac{\partial}{\partial t} U_{\mu}(x, t)=-i \sum_{A} T^{A}\left[\nabla_{x, \mu, A} S_{G}[U]+\eta_{\mu}^{A}(x, t)\right] U_{\mu}(x, t)
$$

where the group derivative is defined as

$$
\nabla_{x, \mu, A} \mathcal{F}[U]=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left(\mathcal{F}\left[e^{i_{\alpha} \tau^{A}} U_{\mu}(x), U^{\prime}\right]-\mathcal{F}[U]\right) .
$$

Perturbation Theory is introduced by means of a formal expansion like

$$
U_{\mu}(x, t)=\sum_{k} \beta^{-\frac{k}{2}} U_{\mu}^{(k)}(x, t) \quad\left(\beta^{-1}=g_{0} / \sqrt{2 N_{c}}\right),
$$

which, plugged into Langevin equation, gives a hierarchical system of differential equations.

The stochastic time can now be discretized as $t=n \tau$ and the system numerically integrated: this is the core of NSPT.

For lattice gauge variables, the Langevin equation is modified as

$$
\frac{\partial}{\partial t} U_{\mu}(x, t)=-i \sum_{A} T^{A}\left[\nabla_{x, \mu, A} S_{G}[U]+\eta_{\mu}^{A}(x, t)\right] U_{\mu}(x, t)
$$

where the group derivative is defined as

$$
\nabla_{x, \mu, A} \mathcal{F}[U]=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left(\mathcal{F}\left[e^{i \alpha T^{A}} U_{\mu}(x), U^{\prime}\right]-\mathcal{F}[U]\right)
$$

Perturbation Theory is introduced by means of a formal expansion like

$$
U_{\mu}(x, t)=\sum_{k} \beta^{-\frac{k}{2}} U_{\mu}^{(k)}(x, t) \quad\left(\beta^{-1}=g_{0} / \sqrt{2 N_{c}}\right)
$$

which, plugged into Langevin equation, gives a hierarchical system of differential equations.

The stochastic time can now be discretized as $t=n \tau$ and the system numerically integrated: this is the core of NSPT.
[F. Di Renzo, E. Onofri, G. Marchesini, P. Marenzoni - Nucl. Phys. B426 (1994) 675]

Outline

(1) The second-loop contribution to the $c_{s w}$ coefficient

- Basics on NSPT
- The observable

- How to get the desired coefficient

(2) Higher-order integrators for NSPT

- Algorithms
- The non-Abelian shift
- A few, preliminary results
(3) Summary and outlook

As well-known, a part of Symanzik's strategy ([R. Symanzik - Nucl. Phys. B226 (1983), 187]) to reduce the dependence of observables on the lattice spacing a to powers from a^{2} on consists of adding the $S_{S W}$ contribution

$$
S_{S W}=\frac{i}{4} c_{S W} \sum_{f} \sum_{x, \mu, \nu} \bar{\psi}_{f}(x) \sigma_{\mu \nu} \hat{F}_{\mu \nu}(x) \psi_{f}(x)
$$

[B. Sheikoleslami, R. Wohlert - Nucl. Phys. B259 (1985), 572]
to the usual lattice QCD action made up of the gauge part S_{G} and the fermionic one S_{F}.
Here

$$
\hat{F}_{\mu \nu}(x)=\frac{1}{8}\left(Q_{\mu \nu}(x)-Q_{\nu \mu}(x)\right),
$$

with

$$
Q_{\mu \nu}(x)=U_{\mu, \nu}(x)+U_{\nu,-\mu}(x)+U_{-\mu, \nu}(x)+U_{-\nu, \mu}(x)
$$

being $U_{ \pm \mu, \pm \nu}(x)$ the plaquette originating at x in the $\mu-\nu$ plane, either in the positive or negative direction(s).

The $c_{S W}$ coefficient can be written as a perturbative expansion in the coupling

$$
c_{S W}=1+c_{s w}^{(1)} g_{0}^{2}+c_{s w}^{(2)} 9_{0}^{4}+\ldots,
$$

where $C_{S w}^{(1)}$ has already been determined ([R. Wohlert - DESY $87 / 069$ (1987), unpublished)) while $c_{s w}^{(2)}$ is still unknown and is actually the target of our efforts.

A possible starting point to get an estimate for $c_{s w}^{(2)}$ is the quark propagator

$$
\begin{aligned}
S_{\alpha \beta}\left(p^{2}\right) & =\left\langle\psi_{\alpha}(p) \bar{\psi}_{\beta}(p)\right\rangle=\frac{1}{Z} \int D[\bar{\psi}] D[\psi] D U \psi_{\alpha}(p) \bar{\psi}_{\beta}(p) e^{-S_{G}-S_{F}-S_{S W}}= \\
& =\frac{1}{Z} \int D[U] \operatorname{det}(M) M_{(p \alpha, p \beta)}^{-1} e^{-S_{G}}=\frac{1}{Z} \int D[U] M_{(p \alpha, p \beta)}^{-1} e^{-S_{G}-\operatorname{Tr[n(M)]}},
\end{aligned}
$$

where the operator M is defined (in position space) as

$$
S_{F}+S_{S W}=\sum_{x, \alpha, b, y, \beta, c} \bar{\psi}(x)_{\alpha, b} M_{x \alpha b, y \beta c} \psi(y)_{\beta, c} .
$$

Outline

(9) The second-loop contribution to the $c_{s w}$ coefficient

- Basics on NSPT
- The observable
- How to get the desired coefficientHigher-order integrators for NSPT
- Algorithms
- The non-Abelian shift
- A few, preliminary resultsSummary and outlook

As usual, the inverse $\Gamma_{2}\left(\hat{p}^{2}, \hat{m}_{c r}, \beta^{-1}\right)$ of the quark propagator can be written as

$$
\Gamma_{2}\left(\hat{p}^{2}, \hat{m}_{c r}, \beta^{-1}\right)=\frac{1}{a}\left[i \hat{p}+\hat{m}_{w}-\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)\right]
$$

being $\hat{p}_{\mu}=2 \sin \left(a \pi p_{\mu} / N_{\mu}\right), \hat{m}_{w}$ the $\mathcal{O}\left(\hat{p}^{2}\right)$ Wilson mass plus the bare mass \hat{m}_{0} (which we set to zero), $\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)$ the self energy and $m_{c r}=\hat{m}_{c r} \cdot a^{-1}$ the critical mass.

The self energy can be decomposed along the Dirac basis as $\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)=\hat{\Sigma}_{C}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)+\hat{\Sigma}_{V}\left(\hat{p}, \hat{m}_{C r}, \beta^{-1}\right)+\hat{\Sigma}_{\sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)+$

The contribution we will study to determine $c_{s w}^{(2)}$ is $\hat{\Sigma}_{C}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)$ which is related to the critical mass as follows
$\hat{\Sigma}\left(0, \hat{m}_{c r}, \beta^{-1}\right)=\hat{\Sigma}_{C}\left(0, \hat{m}_{c r}, \beta^{-1}\right)=\hat{m}_{c r}=a m_{c r}$

As usual, the inverse $\Gamma_{2}\left(\hat{p}^{2}, \hat{m}_{c r}, \beta^{-1}\right)$ of the quark propagator can be written as

$$
\Gamma_{2}\left(\hat{p}^{2}, \hat{m}_{c r}, \beta^{-1}\right)=\frac{1}{a}\left[i \hat{p}+\hat{m}_{w}-\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)\right]
$$

being $\hat{p}_{\mu}=2 \sin \left(a \pi p_{\mu} / N_{\mu}\right), \hat{m}_{w}$ the $\mathcal{O}\left(\hat{p}^{2}\right)$ Wilson mass plus the bare mass \hat{m}_{0} (which we set to zero), $\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)$ the self energy and $m_{c r}=\hat{m}_{c r} \cdot a^{-1}$ the critical mass.

The self energy can be decomposed along the Dirac basis as

$$
\begin{array}{r}
\hat{\Sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)=\hat{\Sigma}_{C}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)+\hat{\Sigma}_{V}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)+\hat{\Sigma}_{\sigma}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)+\ldots \\
\text { [F. Di Renzo, V. Miccio, L. Scorzato, C.T. - Eur. Phys. J. C51 (2007), 645] }
\end{array}
$$

The contribution we will study to determine $c_{s w}^{(2)}$ is $\hat{\Sigma}_{C}\left(\hat{p}, \hat{m}_{c r}, \beta^{-1}\right)$ which is related to the critical mass as follows

$$
\hat{\Sigma}\left(0, \hat{m}_{c r}, \beta^{-1}\right)=\hat{\Sigma}_{C}\left(0, \hat{m}_{c r}, \beta^{-1}\right)=\hat{m}_{c r}=a m_{c r} .
$$

By expanding in powers of a in terms of the hypercubic invariants, one has at every perturbative order i in g_{0}

$$
\hat{\Sigma}_{C}^{(i)}\left(\hat{p}, \hat{m}_{C r}\right)=\alpha_{C, 1}^{(i)}\left(\hat{m}_{C r}\right)+\alpha_{C, 2}^{(i)}\left(\hat{m}_{c r}\right) \sum_{\rho} \hat{p}_{\rho}^{2}+\alpha_{C, 3}^{(i)}\left(\hat{m}_{c r}\right) \sum_{\rho} \hat{p}_{\rho}^{4}+\ldots
$$

After restoring physical units, the only term $\hat{\Sigma}_{C, a}^{(i)}\left(\hat{p}, \hat{m}_{c r}\right)$ at order i depending on the first power of a is

$$
\hat{\Sigma}_{C, a}^{(i)}\left(\hat{p}, \hat{m}_{c r}\right)=\alpha_{C, 2}^{(i)}\left(\hat{m}_{c r}\right) \sum_{\rho} \hat{p}_{\rho}^{2} .
$$

where the coefficient $\alpha_{C, 2}^{(i)}\left(\hat{m}_{c r}\right)$ could be - more correctly - written as depending also on $c_{s w}$ - i.e. as $\alpha_{C, 2}^{(i)}\left(\hat{m}_{c r}, c_{s w}\right)$ - with a relation like

$$
\begin{aligned}
& \alpha_{C, 2}^{(i)}\left(\hat{m}_{c r}, c_{S W}\right)=\sum_{j, k}^{2 i} b_{j k}\left[c_{s w}^{(1)}\right]^{j}\left[c_{s W}^{(2)}\right]^{k} \delta_{2 j+4 k, i} \\
& \text { [H. Panagopoulos, Y. Proestos - Phys. Rev. D65 (2002), 014511] }
\end{aligned}
$$

The second-loop contribution to the $c_{S w}$ coefficient
Higher-order integrators for NSPT
Summary and outlook

The global strategy to estimate $c_{S W}^{(2)}$ is thus the following

- Measure the quark propagator assigning an arbitrary value to $c_{S W}^{(2)}$ and subtracting mass counterterms
- Invert the propagator order by order
- Compute the trace of the g_{0}^{6}-contribution to get its component along the identity

$=\alpha_{C, 1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)+\alpha_{C, 2}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right) \sum \hat{p}_{\rho}^{2}+$
- Extrapolate to $\hat{p}^{2} \rightarrow 0$ to determine $\alpha_{C, 1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$
- Subtract $\alpha_{C, 1}^{(6)}\left(\hat{m}_{\text {cr }}, c_{S W}\right)$ from $\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{C r}, c_{S W}\right)$ and divide the remaining quantity $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{C r}, c_{S W}\right)$ by $\sum_{\rho} \hat{p}_{\rho}^{2}$
- Extrapolate $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{C r}, C_{S W}\right)$ to $\hat{p}^{2} \rightarrow 0$ to get $\alpha_{C, 2}^{(6)}\left(\hat{m}_{C r}, C_{S W}\right)$
- Repeat the whole procedure by changing the value of $c_{S W}^{(2)}$, then fit the different outputs for $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ to get its powerlike dependence on $c_{S W}^{(2)}$ and finally use the coefficients to estimate the value of $c_{S W}^{(2)}$ for which $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)=0$.

The second-loop contribution to the $c_{s w}$ coefficient
Higher-order integrators for NSPT
Summary and outlook

The global strategy to estimate $c_{S W}^{(2)}$ is thus the following

- Measure the quark propagator assigning an arbitrary value to $c_{S W}^{(2)}$ and subtracting mass counterterms
- Invert the propagator order by order
- Compute the trace of the g_{0}^{6}-contribution to get its component along the identity

- Extrapolate to $\hat{p}^{2} \rightarrow 0$ to determine $\alpha_{C, 1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$
- Subtract $\alpha_{C, 1}^{(6)}\left(\hat{m}_{\text {or }}, c_{S W}\right)$ from $\hat{\Sigma}^{(6)}\left(\hat{p}, \hat{m}_{C r}, c_{S W}\right)$ and divide the remaining quantity $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ by $\sum_{\rho} \hat{p}_{\rho}^{2}$
- Extrapolate $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ to $\hat{p}^{2} \rightarrow 0$ to get $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$
- Reneat the whole procedure by changing the value of $c_{S W}^{(2)}$, then fit the different outputs for $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ to get its powerlike dependence on $c_{S W}^{(2)}$ and finally use the coefficients to estimate the value of $c_{S W}^{(2)}$ for which $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)=0$.

The global strategy to estimate $c_{S W}^{(2)}$ is thus the following

- Measure the quark propagator assigning an arbitrary value to $c_{S W}^{(2)}$ and subtracting mass counterterms
- Invert the propagator order by order
- Compute the trace of the g_{0}^{6}-contribution to get its component along the identity

$$
\begin{aligned}
\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right)\right] & =\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right) \mathcal{I}\right]=\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)= \\
& =\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)+\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right) \sum_{\rho} \hat{p}_{\rho}^{2}+\ldots
\end{aligned}
$$

- Extrapolate to $\hat{p}^{2} \rightarrow 0$ to determine $\alpha_{C .1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$
- Subtract $\alpha_{C, 1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$ from $\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{C r}, c_{S W}\right)$ and divide the remaining quantity $\hat{\Sigma}_{C \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{C r}, C_{S W}\right)$ by $\sum_{\rho} \hat{p}_{\rho}^{2}$
- Extrapolate $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, C_{S W}\right)$ to $\hat{p}^{2} \rightarrow 0$ to get $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, C_{S W}\right)$
- Repeat the whole procedure by changing the value of $c_{S W}^{(2)}$, then fit the different outputs for $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ to get its powerlike dependence on $c_{S W}^{(2)}$ and finally use the coefficients to estimate the value of $c_{S W}^{(2)}$ for which $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)=0$.

The global strategy to estimate $c_{S W}^{(2)}$ is thus the following

- Measure the quark propagator assigning an arbitrary value to $c_{S W}^{(2)}$ and subtracting mass counterterms
- Invert the propagator order by order
- Compute the trace of the g_{0}^{6}-contribution to get its component along the identity

$$
\begin{aligned}
\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right)\right] & =\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right) \mathcal{I}\right]=\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)= \\
& =\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)+\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right) \sum_{\rho} \hat{p}_{\rho}^{2}+\ldots
\end{aligned}
$$

- Extrapolate to $\hat{p}^{2} \rightarrow 0$ to determine $\alpha_{C, 1}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$
- Subtract $\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ from $\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ and divide the remaining quantity $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ by $\sum_{\rho} \hat{p}_{\rho}^{2}$
- Extrapolate $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ to $\hat{p}^{2} \rightarrow 0$ to get $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$
- Repeat the whole procedure by changing the value of $c_{S W}^{(2)}$, then fit the different outputs for $\alpha_{C, 2}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)$ to get its powerlike dependence on $c_{S W}^{(2)}$ and finally use the coefficients to estimate the value of $c_{S W}^{(2)}$ for which $\alpha_{C,}^{(6)}\left(\hat{m}_{C r}, c_{S W}\right)=0$.

The global strategy to estimate $c_{S W}^{(2)}$ is thus the following

- Measure the quark propagator assigning an arbitrary value to $c_{S W}^{(2)}$ and subtracting mass counterterms
- Invert the propagator order by order
- Compute the trace of the g_{0}^{6}-contribution to get its component along the identity

$$
\begin{aligned}
\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right)\right] & =\operatorname{Tr}\left[\hat{\Gamma}_{2}^{(6)}\left(\hat{p}^{2}, \hat{m}_{c r}, c_{S W}\right) \mathcal{I}\right]=\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)= \\
& =\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)+\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right) \sum_{\rho} \hat{p}_{\rho}^{2}+\ldots
\end{aligned}
$$

- Extrapolate to $\hat{p}^{2} \rightarrow 0$ to determine $\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$
- Subtract $\alpha_{C, 1}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ from $\hat{\Sigma}_{C}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ and divide the remaining quantity $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ by $\sum_{\rho} \hat{p}_{\rho}^{2}$
- Extrapolate $\hat{\Sigma}_{C, \text { sub }}^{(6)}\left(\hat{p}, \hat{m}_{c r}, c_{S W}\right)$ to $\hat{p}^{2} \rightarrow 0$ to get $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$
- Repeat the whole procedure by changing the value of $c_{S W}^{(2)}$, then fit the different outputs for $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)$ to get its powerlike dependence on $c_{S W}^{(2)}$ and finally use the coefficients to estimate the value of $c_{S W}^{(2)}$ for which $\alpha_{C, 2}^{(6)}\left(\hat{m}_{c r}, c_{S W}\right)=0$.

Outline

The second-loop contribution to the $c_{S W}$ coefficient
 - Basics on NSPT
 - The observable
 - How to get the desired coefficient

(2) Higher-order integrators for NSPT

- Algorithms
- The non-Abelian shift
- A few, preliminary results
(3) Summary and outlook

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit $\tau \rightarrow 0$

Simulations with different values of τ are required

Increase of needed computer-time:
intuitively, the smaller the value of time step is, the longer simulations take

Solution

Performing simulations with values of τ as large as possible \Downarrow

Need for high-order integrators for the Langevin equation: at fixed accuracy, they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit

$$
\tau \rightarrow 0
$$

Simulations with different values of τ are required

Increase of needed computer-time:
intuitively, the smaller the value of time step is, the longer simulations take

Solution
Performing simulations with values of τ as large as possible

Need for high-order integrators for the Langevin equation: at fixed accuracy,
they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit $\tau \rightarrow 0$
\Downarrow
Simulations with different values of τ are required

Increase of needed computer-time:
intuitively, the smaller the value of time step is, the longer simulations take

Solution
Performing simulations with values of τ as large as possible

Need for high-order integrators for the Langevin equation: at fixed accuracy,
they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit

$$
\tau \rightarrow 0
$$

$$
\Downarrow
$$

Simulations with different values of τ are required \Downarrow

Increase of needed computer-time:

intuitively, the smaller the value of time step is, the longer simulations take

Solution
Performing simulations with values of τ as large as possible

Need for high-order integrators for the Langevin equation: at fixed accuracy they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit

$$
\tau \rightarrow 0
$$

$$
\Downarrow
$$

Simulations with different values of τ are required
\Downarrow

Increase of needed computer-time:

intuitively, the smaller the value of time step is, the longer simulations take

Solution

Performing simulations with values of τ as large as possible

Need for high-order integrators for the Langevin equation: at fixed accuracy, they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit

$$
\tau \rightarrow 0
$$

$$
\Downarrow
$$

Simulations with different values of τ are required

$$
\Downarrow
$$

Increase of needed computer-time:

intuitively, the smaller the value of time step is, the longer simulations take

Solution

Performing simulations with values of τ as large as possible

Need for high-order integrators for the Langevin equation: at fixed accuracy
they flatten the τ-dependence thus allowing the usage of larger time steps

Drawback

Within NSPT, the right equilibrium distribution is recovered only in the limit

$$
\tau \rightarrow 0
$$

$$
\Downarrow
$$

Simulations with different values of τ are required

$$
\Downarrow
$$

Increase of needed computer-time:

intuitively, the smaller the value of time step is, the longer simulations take

Solution

Performing simulations with values of τ as large as possible
\Downarrow
Need for high-order integrators for the Langevin equation: at fixed accuracy, they flatten the τ-dependence thus allowing the usage of larger time steps

The translation from usual Runge-Kutta mth-order integrator for scalar variables to group case is straightforward:

$$
\begin{aligned}
& y_{n+1}=y_{n}+\tau \sum_{l=1}^{m} b_{l} k_{l} \longrightarrow U_{\mu}\left(x, \tau_{n+1}\right)=\exp \left[-i \tau \sum_{j=1}^{m} b_{l}\left(\eta_{\mu}\left(x, \tau_{n}\right)+\tilde{k}_{l}\right)\right] U_{\mu}\left(x, \tau_{n}\right), \\
& k_{l}=f\left(\tau_{n}+c_{l} \tau, y_{n}+\tau \sum_{r=1}^{l-1} a_{l, r} k_{r}\right) \longrightarrow \tilde{k}_{l}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\widetilde{U}^{(l)}\right],
\end{aligned}
$$

where $S\left[\widetilde{U}^{(1)}\right]$ is the expression of the action where all gauge variables have changed as

$$
U_{\mu}\left(x, \tau_{n}\right) \longrightarrow \exp \left[-i \tau \sum_{r=1}^{I-1} a_{l, r}\left(\eta_{\mu}\left(x, \tau_{n}\right)+\tilde{k}_{r}\right)\right] U_{\mu}\left(x, \tau_{n}\right)
$$

It is understood that

$$
k_{1}=f\left(\tau_{n}, y_{n}\right) \quad, \quad \tilde{k}_{1}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[U\left(\tau_{n}\right)\right]
$$

As a trivial example, the first-order integrator for the scalar case is given by

$$
y_{n+1}=y_{n}+\tau f\left(\tau_{n}, y_{n}\right),
$$

while the group counterpart reads

$$
U_{\mu}\left(x, \tau_{n+1}\right)=e^{-i \tau \sum_{A} T^{A} \nabla_{x, \mu, A} A\left[U\left(\tau_{n}\right)\right]-i \sqrt{\tau} \eta_{\mu}\left(x, \tau_{n}\right)} U_{\mu}\left(x, \tau_{n}\right),
$$

For the second-order integrator, two versions are available: their Butcher tableaux are given by

0	
1	1
	$1 / 21 / 2$

0		
$1 / 2$	$1 / 2$	
	0	1

and their corresponding algorithms are

$$
\begin{aligned}
U_{\mu}\left(x, \tau_{n+1}\right) & =e^{-i \frac{1}{2} \tau \tilde{k}_{1}-i \frac{1}{2} \tau \tilde{k}_{2}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right), & U_{\mu}\left(x, \tau_{n+1}\right) & =e^{-i 1 \cdot \tau \tilde{k}_{2}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right), \\
\tilde{k}_{1} & =\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[U\left(\tau_{n}\right)\right], & \tilde{k}_{2} & =\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\widetilde{U}^{(2)}\right] \\
\tilde{k}_{2} & =\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(2)}\right], & \tilde{U}_{\mu}^{(2)}(x, .) & =e^{-i \frac{1}{2} \tau \tilde{k}_{1}-i \frac{1}{2} \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right), \\
\widetilde{U}_{\mu}^{(2)}(x, .) & =e^{-i 1 \cdot \tau \tilde{k}_{1}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right), & \tilde{k}_{1} & =\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[U\left(\tau_{n}\right)\right],
\end{aligned}
$$

[G. G. Batrouni et al. - Phys. Rev. D32 (1985), 2736]

Concerning the third-order integrator, its Butcher tableau is

0			
$1 / 2$	$1 / 2$		
1	-1	2	
	$1 / 6$	$2 / 3$	$1 / 6$

while the algorithm reads

$$
\begin{gathered}
U_{\mu}\left(x, \tau_{n+1}\right)=e^{-i \frac{1}{6} \tau \tilde{k}_{1}-i \frac{2}{3} \tau \tilde{k}_{2}-i \frac{1}{6} \tau \tilde{k}_{3}-\cdot 1 \cdot i \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right) \\
\tilde{k}_{1}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[U\left(\tau_{n}\right)\right] \\
\tilde{k}_{2}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(2)}\right] \quad, \quad \tilde{U}_{\mu}^{(2)}(x, .)=e^{-i \frac{1}{2} \tau \tilde{k}_{1}-i \frac{1}{2} \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right) \\
\tilde{k}_{3}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(3)}\right] \quad, \quad \tilde{U}_{\mu}^{(3)}(x, .)=e^{-i \cdot(-1) \cdot \tau \tilde{k}_{1}-i \cdot 2 \cdot \tau \tilde{k}_{2}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right)
\end{gathered}
$$

Finally, the fourth-order integrator: its Butcher tableau

0				
$1 / 2$	$1 / 2$			
$1 / 2$	0	$1 / 2$		
1	0	0	1	
	$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$

and the related algorithm

$$
\begin{aligned}
& U_{\mu}\left(x, \tau_{n+1}\right)=e^{-i \frac{1}{6} \tau \tilde{k}_{1}-i \frac{1}{3} \tau \tilde{k}_{2}-i \frac{1}{3} \tau \tilde{k}_{3}-i \frac{1}{6} \tau \tilde{k}_{4}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right), \\
& \tilde{k}_{1}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[U\left(\tau_{n}\right)\right] \\
& \tilde{k}_{2}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(2)}\right], \quad \tilde{U}_{\mu}^{(2)}(x, .)=e^{-i \frac{1}{2} \tau \tilde{k}_{1}-i \frac{1}{2} \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right) \\
& \tilde{k}_{3}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(3)}\right] \quad, \quad \tilde{U}_{\mu}^{(3)}(x, .)=e^{-i \frac{1}{2} \tau \tilde{k}_{2}-i \frac{1}{2} \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right) \\
& \tilde{k}_{4}=\sum_{A} T^{A} \nabla_{x, \mu, A} S\left[\tilde{U}^{(4)}\right] \quad, \quad \tilde{U}_{\mu}^{(4)}(x, .)=e^{-i \cdot 1 \cdot \tau \tilde{k}_{3}-i \cdot 1 \cdot \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right)
\end{aligned}
$$

Question: on one hand, higher-order integrators allow larger time steps, thus reducing the number of iterations; on the other hand, every iteration now asks for more operations: are these more involved algorithms still worth?

Yes!

Let's count the number of sweeps per iteration to prove it.

First-order integrator:
$\begin{array}{ll}1 & \text { Langevin dynamics } \\ 1 & \text { zero-modes subtraction } \\ 1 & \text { stochastic gauge-fixing } \\ 3 & \text { sweeps per iteration }\end{array}$

Second-order integrator:

2	Langevin dynamics
1	zero-modes subtraction
1	stochastic gauge-fixing
4	sweeps per iteration

In the second case, at fixed accuracy, experience reveals that the number of iterations is 4 times smaller than in the first one so that getting results takes altogether three times less.
With the third-order integrator, the ratio old/new becomes 5 .

Question: on one hand, higher-order integrators allow larger time steps, thus reducing the number of iterations; on the other hand, every iteration now asks for more operations: are these more involved algorithms still worth?

Yes!

Let's count the number of sweeps per iteration to prove it.

First-order integrator: $\begin{array}{ll}1 & \text { Langevin dynamics } \\ 1 & \text { zero-modes subtraction } \\ 1 & \text { stochastic gauge-fixing } \\ 3 & \text { sweeps per iteration }\end{array}$

Second-order integrator:

In the second case, at fixed accuracy, experience reveals that the number of iterations is 4 times smaller than in the first one so that getting results takes altogether three times less.
With the third-order integrator, the ratio old/new becomes 5 .

Question: on one hand, higher-order integrators allow larger time steps, thus reducing the number of iterations; on the other hand, every iteration now asks for more operations: are these more involved algorithms still worth?

Yes!

Let's count the number of sweeps per iteration to prove it.

First-order integrator:

1	Langevin dynamics
1	zero-modes subtraction
1	stochastic gauge-fixing
3	sweeps per iteration

Second-order integrator:

In the second case, at fixed accuracy, experience reveals that the number of iterations is 4 times smaller than in the first one so that getting results takes altogether three times less.
With the third-order integrator, the ratio old/new becomes 5 .

Question: on one hand, higher-order integrators allow larger time steps, thus reducing the number of iterations; on the other hand, every iteration now asks for more operations: are these more involved algorithms still worth?

Yes!

Let's count the number of sweeps per iteration to prove it.

First-order integrator:

1	Langevin dynamics
1	zero-modes subtraction
1	stochastic gauge-fixing
3	sweeps per iteration

Second-order integrator:
2 Langevin dynamics
1 zero-modes subtraction
1 stochastic gauge-fixing
4 sweeps per iteration

In the second case, at fixed accuracy, experience reveals that the number of iterations is 4 times smaller than in the first one so that getting results takes altogether three times less.
With the third-order integrator, the ratio old/new becomes 5 .

Question: on one hand, higher-order integrators allow larger time steps, thus reducing the number of iterations; on the other hand, every iteration now asks for more operations: are these more involved algorithms still worth?

Yes!

Let's count the number of sweeps per iteration to prove it.

First-order integrator:

1	Langevin dynamics
1	zero-modes subtraction
1	stochastic gauge-fixing
3	sweeps per iteration

Second-order integrator:
2 Langevin dynamics
1 zero-modes subtraction
1 stochastic gauge-fixing
4 sweeps per iteration

In the second case, at fixed accuracy, experience reveals that the number of iterations is 4 times smaller than in the first one so that getting results takes altogether three times less.
With the third-order integrator, the ratio old/new becomes 5 .

Outline

The second-loop contribution to the $c_{S w}$ coefficient

- Basics on NSPT
- The observable
- How to get the desired coefficient
(2) Higher-order integrators for NSPT
- Algorithms
- The non-Abelian shift
- A few, preliminary results
(3) Summary and outlook

After introducing the discrete time step τ, the equilibrium action of the Langevin process can be written as

$$
\bar{S}[\phi]=S_{0}[\phi]+\tau S_{1}[\phi]+\tau^{2} S_{2}[\phi]+\ldots,
$$

where $S_{0}[\phi]$ is the action for continuum stochastic time.
To determine $\bar{S}[\phi]$, one has to solve the Fokker-Planck equation at equilibrium

where
with

After introducing the discrete time step τ, the equilibrium action of the Langevin process can be written as

$$
\bar{S}[\phi]=S_{0}[\phi]+\tau S_{1}[\phi]+\tau^{2} S_{2}[\phi]+\ldots,
$$

where $S_{0}[\phi]$ is the action for continuum stochastic time.
To determine $\bar{S}[\phi]$, one has to solve the Fokker-Planck equation at equilibrium

$$
\frac{1}{\tau}\left[P_{c}\left(\tau_{n+1}\right)-P_{c}\left(\tau_{n}\right)\right]=\frac{1}{\tau} \sum_{n=1}^{+\infty} \sum_{x_{1} \ldots x_{n}} \frac{\partial}{\partial \phi\left(x_{1}\right)} \cdots \frac{\partial}{\partial \phi\left(x_{n}\right)} \Delta_{x_{1} \ldots x_{n}} P_{c}\left(\tau_{n}\right)
$$

where

$$
\Delta_{x_{1} \ldots x_{n}}=\frac{1}{n!}\left\langle f_{x_{1}} \ldots f_{x_{n}}\right\rangle_{\eta}
$$

with

$$
f_{x}=\tau \frac{\partial S[\phi]}{\partial \phi(x)}+\sqrt{\tau} \eta\left(x, \tau_{n}\right)
$$

The solution at first order in τ reads

$$
\bar{S}[\phi]=S_{0}[\phi]+\frac{1}{4} \sum_{x} \tau\left[2 \frac{\partial^{2} S[\phi]}{\partial \phi(x)}-\left(\frac{\partial S[\phi]}{\partial \phi(x)}\right)^{2}\right]+\ldots
$$

where the contributions proportional to τ have been obtained from terms like

$$
\begin{gathered}
\left\langle\frac{\partial S[\phi]}{\partial \phi(x)} \frac{\partial S[\phi]}{\partial \phi(y)}\right\rangle \\
\left\langle\eta\left(x, \tau_{n}\right) \eta\left(y, \tau_{n}\right) \frac{\partial S[\phi]}{\partial \phi(z)}\right\rangle \\
\left\langle\eta\left(x, \tau_{n}\right) \eta\left(y, \tau_{n}\right) \eta\left(z, \tau_{n}\right) \eta\left(q, \tau_{n}\right)\right\rangle
\end{gathered}
$$

+ all possible permutations of position indices.

However, in the case of group variables, the derivatives no longer commute but they rather obey the algebra of the Lie group

$$
\left[\nabla_{A}, \nabla_{B}\right]=-f_{A B C} \nabla_{C},
$$

so that the equilibrium distribution gets another contribution proportional to τ

$$
\bar{S}[U]=\left[1+\frac{\tau}{12} C_{A}\right] S_{0}[U]+\frac{1}{4} \tau \sum_{x, A} \nabla_{x, A}^{2} S[U]+\ldots
$$

Given to this, the second-order algorithm - for example - is modified as

However, in the case of group variables, the derivatives no longer commute but they rather obey the algebra of the Lie group

$$
\left[\nabla_{A}, \nabla_{B}\right]=-f_{A B C} \nabla_{C},
$$

so that the equilibrium distribution gets another contribution proportional to τ

$$
\bar{S}[U]=\left[1+\frac{\tau}{12} C_{A}\right] S_{0}[U]+\frac{1}{4} \tau \sum_{x, A} \nabla_{x, A}^{2} S[U]+\ldots
$$

Given to this, the second-order algorithm - for example - is modified as

$$
U_{\mu}\left(x, \tau_{n+1}\right)=e^{-i \frac{1}{2}\left[1+\frac{\tau C_{A}}{6 \beta}\right]\left[\tau \tilde{k}_{1}+\tau \tilde{k}_{2}\right]-i \sqrt{\tau} \eta_{\mu}} U_{\mu}\left(x, \tau_{n}\right)
$$

[G. G. Batrouni et al. - Phys. Rev. D32 (1985), 2736]

Outline

The second-loop contribution to the $c_{S w}$ coefficient

- Basics on NSPT
- The observable
- How to get the desired coefficient
(2) Higher-order integrators for NSPT
- Algorithms
- The non-Abelian shift
- A few, preliminary results
(3) Summary and outlook
- One-loop plaquette results from the first-, second-, third- and fourth-order integrator at $\mathrm{L}=4$ (analytical value reads -1.9922)

Order of integrator	Time steps	1st loop
1	$10,15,20$	$-1.9930(7)$
2	$50,60,70$	$-1.9922(6)$
3	$90,100,110$	$-1.9918(10)$
4	$110,122,130$	$-1.9914(10)$

- Many-loop plaquette results from the first- and second-order integrator at $\mathrm{L}=4$ (analytical values read -1.9922 and -1.2037 for first and second loop respective'y)

Order of integrator	1st loop	2nd loop	3rd loop	4th loop
1	$-1.9930(7)$	$-1.2027(18)$	$-2.8781(67)$	$-8.994(30)$
2	$-1.9922(6)$	$-1.2002(17)$	$-2.8778(62)$	$-8.990(28)$

- One-loop plaquette results from the first-, second-, third- and fourth-order integrator at $\mathrm{L}=4$ (analytical value reads -1.9922)

Order of integrator	Time steps	1st loop
1	$10,15,20$	$-1.9930(7)$
2	$50,60,70$	$-1.9922(6)$
3	$90,100,110$	$-1.9918(10)$
4	$110,122,130$	$-1.9914(10)$

- Many-loop plaquette results from the first- and second-order integrator at $\mathrm{L}=4$ (analytical values read -1.9922 and -1.2037 for first and second loop respectively)

Order of integrator	1st loop	2nd loop	3rd loop	4th loop
1	$-1.9930(7)$	$-1.2027(18)$	$-2.8781(67)$	$-8.994(30)$
2	$-1.9922(6)$	$-1.2002(17)$	$-2.8778(62)$	$-8.990(28)$

- Summary
- NSPT estimate of $c_{S W}^{(2)}$ appears feasible (at least in principle)
- Higher-order integrators significantly reduce computer time without any loss in numerical accuracy
- Outlook
- Including sea quarks and determining the improved critical mass at three loops
- Fixing the problems with the non-Abelian shift and computing the non-Abelian contributions at higher loops
- Summary
- NSPT estimate of $c_{S W}^{(2)}$ appears feasible (at least in principle)
- Higher-order integrators significantly reduce computer time without any loss in numerical accuracy
- Outlook
- Including sea quarks and determining the improved critical mass at three loops
- Fixing the problems with the non-Abelian shift and computing the non-Abelian contributions at higher loops

Contributions to lattice QCD action

- Wilson gauge part

$$
S_{G}=\beta \sum_{\substack{n, \mu, \nu \\ \mu>\nu}}\left(1-\frac{T r}{2 N_{c}}\left(U_{\mu \nu}(n)+U_{\mu \nu}^{\dagger}(n)\right)\right) .
$$

- fermionic part

$$
\begin{aligned}
S_{F} & =-\frac{1}{2} \sum_{f} \sum_{x, \mu}\left[\bar{\psi}_{f}(x)\left(r-\gamma_{\mu}\right) U_{\mu}(x) \psi_{f}(x+\hat{\mu})+\bar{\psi}_{f}(x)\left(r+\gamma_{\mu}\right) U_{\mu}(x)^{\dagger} \psi_{f}(x)\right]+ \\
& +\sum_{f} \sum_{x}\left(4 r+\hat{m}_{0}\right) \bar{\psi}_{f}(x) \psi_{f}(x),
\end{aligned}
$$

The odd shape of the noise term comes from two further steps:

- when discretizing, the normalization condition becomes

$$
\left\langle\eta^{a}\left(x, \tau_{n}\right) \eta^{a^{\prime}}\left(x^{\prime}, \tau_{n^{\prime}}\right)\right\rangle=\frac{2}{\tau} \delta_{x, x^{\prime}} \delta_{n, n^{\prime}} \delta_{a, a^{\prime}}
$$

- Wilson gauge action S_{W} reads

$$
S_{G}=\beta \sum_{\substack{n, \mu, \nu \\ \mu>\nu}}\left(1-\frac{T_{r}}{2 N_{c}}\left(U_{\mu \nu}(n)+U_{\mu \nu}^{\dagger}(n)\right)\right)
$$

so that, when computing the group derivative, the awkward prefactor $\tau \beta$ appears.

The odd shape of the noise term comes from two further steps:

- when discretizing, the normalization condition becomes

$$
\left\langle\eta^{a}\left(x, \tau_{n}\right) \eta^{a^{\prime}}\left(x^{\prime}, \tau_{n^{\prime}}\right)\right\rangle=\frac{2}{\tau} \delta_{x, x^{\prime}} \delta_{n, n^{\prime}} \delta_{a, a^{\prime}}
$$

Then one introduces $\tilde{\eta}=\sqrt{\tau} \eta$ so that

$$
\left\langle\tilde{\eta}^{a}\left(x, \tau_{n}\right) \tilde{\eta}^{a^{\prime}}\left(x^{\prime}, \tau_{n^{\prime}}\right)\right\rangle=2 \delta_{x, x^{\prime}} \delta_{n, n^{\prime}} \delta_{a, a^{\prime}} .
$$

- Wilson gauge action S_{W} reads

so that, when computing the group derivative, the awkward prefactor $\tau \beta$ appears.

The odd shape of the noise term comes from two further steps:

- when discretizing, the normalization condition becomes

$$
\left\langle\eta^{a}\left(x, \tau_{n}\right) \eta^{a^{\prime}}\left(x^{\prime}, \tau_{n^{\prime}}\right)\right\rangle=\frac{2}{\tau} \delta_{x, x^{\prime}} \delta_{n, n^{\prime}} \delta_{a, a^{\prime}} .
$$

Then one introduces $\tilde{\eta}=\sqrt{\tau} \eta$ so that

$$
\left\langle\tilde{\eta}^{a}\left(x, \tau_{n}\right) \tilde{\eta}^{a^{\prime}}\left(x^{\prime}, \tau_{n^{\prime}}\right)\right\rangle=2 \delta_{x, x^{\prime}} \delta_{n, n^{\prime}} \delta_{a, a^{\prime}} .
$$

- Wilson gauge action S_{W} reads

$$
S_{G}=\beta \sum_{\substack{n, \mu, \nu \\ \mu>\nu}}\left(1-\frac{\operatorname{Tr}}{2 N_{c}}\left(U_{\mu \nu}(n)+U_{\mu \nu}^{\dagger}(n)\right)\right),
$$

so that, when computing the group derivative, the awkward prefactor $\tau \beta$ appears.
To compensate for this, the time step τ is replaced by $\tau^{\prime}=\tau \beta$ so that

$$
\begin{equation*}
\tilde{\eta}=\sqrt{\tau} \eta=\sqrt{\frac{\tau^{\prime}}{\beta}} \eta \rightarrow \eta=\sqrt{\frac{\beta}{\tau^{\prime}}} \tilde{\eta} \tag{4}
\end{equation*}
$$

When acting on the trace term, the group derivative implies the computation of an object like

$$
\nabla_{x, \mu, A} \operatorname{Tr}[\ln (M)]=\operatorname{Tr}\left[M^{-1} \nabla_{x, \mu, A} M\right]
$$

which is accomplished in two steps:

- the inversion of the operator M is obtained by means of the well-known formula

- the trace is computed via auxiliary gaussian fields

where $\left\langle\xi_{i} \xi_{j}\right\rangle=\delta_{i j}$.

When acting on the trace term, the group derivative implies the computation of an object like

$$
\nabla_{x, \mu, A} \operatorname{Tr}[\ln (M)]=\operatorname{Tr}\left[M^{-1} \nabla_{x, \mu, A} M\right]
$$

which is accomplished in two steps:

- the inversion of the operator M is obtained by means of the well-known formula

$$
\begin{aligned}
M^{-1}= & -M_{0}^{-1}+ \\
& -M_{0}^{-1} M_{1} M_{0}^{-1}+ \\
& -M_{0}^{-1}\left(M_{1}\left[M^{-1}\right]_{1}+M_{2} M_{0}^{-1}\right)+ \\
& +\ldots ;
\end{aligned}
$$

- the trace is computed via auxiliary gaussian fields

When acting on the trace term, the group derivative implies the computation of an object like

$$
\nabla_{x, \mu, A} \operatorname{Tr}[\ln (M)]=\operatorname{Tr}\left[M^{-1} \nabla_{x, \mu, A} M\right]
$$

which is accomplished in two steps:

- the inversion of the operator M is obtained by means of the well-known formula

$$
\begin{aligned}
M^{-1}= & -M_{0}^{-1}+ \\
& -M_{0}^{-1} M_{1} M_{0}^{-1}+ \\
& -M_{0}^{-1}\left(M_{1}\left[M^{-1}\right]_{1}+M_{2} M_{0}^{-1}\right)+ \\
& +\ldots ;
\end{aligned}
$$

- the trace is computed via auxiliary gaussian fields

$$
\operatorname{Tr}\left[M^{-1} \nabla_{x, \mu, A} M\right]=\sum_{i, j} M_{i j}^{-1}\left(\nabla_{x, \mu, A} M\right)_{j i}=\sum_{i, j, k} \xi_{i} M_{i j}^{-1}\left(\nabla_{x, \mu, A} M\right)_{j k} \xi_{k}
$$

where $\left\langle\xi_{i} \xi_{j}\right\rangle=\delta_{i j}$.

Visual comparison among plaquette data from different integrators at lattice extent $L=4$

On the left, first-loop results for the lattice plaquette: blue dots are the data obtained from the first-order integrator, red and black diamonds correspond to the second- and third-order one respectively. On the right, the corresponding $\tau \rightarrow 0$ results compared to the analytical one (black cross).

