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The starting point of Numerical Stochastic Perturbation Theory (NSPT) is
given by Stochastic Quantization .

[G. Parisi, Wu Y. - Sci. Sin. 24 (1981), 483]

Main ingredients

Introduction of a stochastic time t as a new degree of freedom

φ(x) → φ(x , t) .

Langevin equation with gaussian noise

∂φ(x , t)
∂t

= − ∂S[φ]

∂φ(x , t)
+ η(x , t) ,

〈η(x , t)η(x ′, t ′)〉 = 2δ(x − x ′)δ(t − t ′) .

All this results in

〈O[φ1(x1, t), φ2(x2, t), . . .]〉η
t→+∞−→ 1

Z

∫
[Dφ]O[φ1(x1), φ2(x2), . . .]e

−S[φ] .
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For lattice gauge variables, the Langevin equation is modified as

∂

∂t
Uµ(x , t) = −i

∑
A

T A[
∇x,µ,ASG[U] + ηA

µ(x , t)
]
Uµ(x , t) ,

where the group derivative is defined as

∇x,µ,AF [U] = lim
α→0

1
α

(
F

[
eiαT A

Uµ(x),U ′]−F
[
U

])
.

Perturbation Theory is introduced by means of a formal expansion like

Uµ(x , t) =
∑

k

β−
k
2 U(k)

µ (x , t) (β−1 = g0/
√

2Nc),

which, plugged into Langevin equation, gives a hierarchical system of
differential equations.

The stochastic time can now be discretized as t = nτ and the system
numerically integrated: this is the core of NSPT.

[F. Di Renzo, E. Onofri, G. Marchesini, P. Marenzoni - Nucl. Phys. B426 (1994) 675 ]
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As well-known, a part of Symanzik’s strategy ([R. Symanzik - Nucl. Phys. B226 (1983), 187])
to reduce the dependence of observables on the lattice spacing a to powers
from a2 on consists of adding the SSW contribution

SSW =
i
4

cSW

∑
f

∑
x,µ,ν

ψ̄f (x)σµν F̂µν(x)ψf (x) ,

[B. Sheikoleslami, R. Wohlert - Nucl. Phys. B259 (1985), 572]

to the usual lattice QCD action made up of the gauge part SG and the
fermionic one SF .
Here

F̂µν(x) =
1
8

(
Qµν(x)−Qνµ(x)

)
,

with

Qµν(x) = Uµ,ν(x) + Uν,−µ(x) + U−µ,ν(x) + U−ν,µ(x) ,

being U±µ,±ν(x) the plaquette originating at x in the µ− ν plane, either in the
positive or negative direction(s).
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The cSW coefficient can be written as a perturbative expansion in the coupling

cSW = 1 + c(1)
sw g2

0 + c(2)
sw g4

0 + . . . ,

where c(1)
sw has already been determined ([R. Wohlert - DESY 87/069 (1987), unpublished])

while c(2)
sw is still unknown and is actually the target of our efforts.

A possible starting point to get an estimate for c(2)
sw is the quark propagator

Sαβ(p2) = 〈ψα(p)ψ̄β(p)〉 =
1
Z

∫
D[ψ̄]D[ψ]DU ψα(p)ψ̄β(p) e−SG−SF−SSW =

=
1
Z

∫
D[U] det(M)M−1

(pα,pβ) e−SG =
1
Z

∫
D[U] M−1

(pα,pβ)e
−SG−Tr [ln(M)] ,

where the operator M is defined (in position space) as

SF + SSW =
∑

x,α,b,y,β,c

ψ̄(x)α,bMxαb,yβcψ(y)β,c .
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As usual, the inverse Γ2(p̂2, m̂cr , β−1) of the quark propagator can be written as

Γ2(p̂
2, m̂cr , β

−1) =
1

a

[
i /̂p + m̂w − Σ̂(p̂, m̂cr , β

−1)
]

,

being p̂µ = 2 sin(aπpµ/Nµ), m̂w the O(p̂2) Wilson mass plus the bare mass m̂0

(which we set to zero), Σ̂(p̂, m̂cr , β−1) the self energy and mcr = m̂cr · a−1 the critical
mass.

The self energy can be decomposed along the Dirac basis as

Σ̂(p̂, m̂cr , β
−1) = Σ̂C(p̂, m̂cr , β

−1) + Σ̂V (p̂, m̂cr , β
−1) + Σ̂σ(p̂, m̂cr , β

−1) + . . . .

[F. Di Renzo, V. Miccio, L. Scorzato, C.T. - Eur. Phys. J. C51 (2007), 645]

The contribution we will study to determine c(2)
sw is Σ̂C(p̂, m̂cr , β−1) which is related to

the critical mass as follows

Σ̂(0, m̂cr , β
−1) = Σ̂C(0, m̂cr , β

−1) = m̂cr = amcr .
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By expanding in powers of a in terms of the hypercubic invariants, one has at every
perturbative order i in g0

Σ̂
(i)
C (p̂, m̂cr ) = α

(i)
C,1(m̂cr ) + α

(i)
C,2(m̂cr )

∑
ρ

p̂2
ρ + α

(i)
C,3(m̂cr )

∑
ρ

p̂4
ρ + . . . .

After restoring physical units, the only term Σ̂
(i)
C,a(p̂, m̂cr ) at order i depending on the

first power of a is

Σ̂
(i)
C,a(p̂, m̂cr ) = α

(i)
C,2(m̂cr )

∑
ρ

p̂2
ρ .

where the coefficient α
(i)
C,2(m̂cr ) could be - more correctly - written as depending also

on csw - i.e. as α
(i)
C,2(m̂cr , csw ) - with a relation like

α
(i)
C,2(m̂cr , csw ) =

2i∑
j,k

bjk [c(1)
sw ]j [c(2)

sw ]k δ2j+4k,i ,

[H. Panagopoulos, Y. Proestos - Phys. Rev. D65 (2002), 014511]
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The global strategy to estimate c(2)
SW is thus the following

Measure the quark propagator assigning an arbitrary value to c(2)
SW and

subtracting mass counterterms

Invert the propagator order by order

Compute the trace of the g6
0 -contribution to get its component along the identity

Tr [Γ̂(6)
2 (p̂2, m̂cr , cSW )] = Tr [Γ̂(6)

2 (p̂2, m̂cr , cSW )I] = Σ̂
(6)
C (p̂, m̂cr , cSW ) =

= α
(6)
C,1(m̂cr , cSW ) + α

(6)
C,2(m̂cr , cSW )

∑
ρ

p̂2
ρ + . . . .

Extrapolate to p̂2 → 0 to determine α
(6)
C,1(m̂cr , cSW )

Subtract α
(6)
C,1(m̂cr , cSW ) from Σ̂

(6)
C (p̂, m̂cr , cSW ) and divide the remaining

quantity Σ̂
(6)
C,sub(p̂, m̂cr , cSW ) by

∑
ρ p̂2

ρ

Extrapolate Σ̂
(6)
C,sub(p̂, m̂cr , cSW ) to p̂2 → 0 to get α

(6)
C,2(m̂cr , cSW )

Repeat the whole procedure by changing the value of c(2)
SW , then fit the different

outputs for α
(6)
C,2(m̂cr , cSW ) to get its powerlike dependence on c(2)

SW and finally

use the coefficients to estimate the value of c(2)
SW for which α

(6)
C,2(m̂cr , cSW ) = 0.
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(6)
C (p̂, m̂cr , cSW ) and divide the remaining

quantity Σ̂
(6)
C,sub(p̂, m̂cr , cSW ) by

∑
ρ p̂2

ρ

Extrapolate Σ̂
(6)
C,sub(p̂, m̂cr , cSW ) to p̂2 → 0 to get α

(6)
C,2(m̂cr , cSW )

Repeat the whole procedure by changing the value of c(2)
SW , then fit the different

outputs for α
(6)
C,2(m̂cr , cSW ) to get its powerlike dependence on c(2)

SW and finally

use the coefficients to estimate the value of c(2)
SW for which α

(6)
C,2(m̂cr , cSW ) = 0.
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Drawback
Within NSPT, the right equilibrium distribution is recovered only in the limit

τ → 0

⇓

Simulations with different values of τ are required

⇓

Increase of needed computer-time :
intuitively, the smaller the value of time step is, the longer simulations take

Solution
Performing simulations with values of τ as large as possible

⇓

Need for high-order integrators for the Langevin equation: at fixed accuracy,
they flatten the τ -dependence thus allowing the usage of larger time steps
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The translation from usual Runge-Kutta mth-order integrator for scalar
variables to group case is straightforward:

yn+1 = yn + τ
m∑

l=1

bl kl −→ Uµ(x , τn+1) = exp
[
− iτ

m∑
j=1

bl

(
ηµ(x , τn) + k̃l

)]
Uµ(x , τn) ,

kl = f
(
τn + clτ, yn+τ

l−1∑
r=1

al,r kr

)
−→ k̃l =

∑
A

T A∇x,µ,AS[ Ũ(l)] ,

where S[ Ũ(l)] is the expression of the action where all gauge variables have changed
as

Uµ(x , τn) −→ exp
[
− iτ

l−1∑
r=1

al,r

(
ηµ(x , τn) + k̃r

)]
Uµ(x , τn) .

It is understood that

k1 = f (τn, yn) , k̃1 =
∑

A

T A∇x,µ,AS[U(τn)] .
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As a trivial example, the first-order integrator for the scalar case is given by

yn+1 = yn + τ f (τn, yn) ,

while the group counterpart reads

Uµ(x , τn+1) = e−iτ
∑

AT A∇x,µ,AS[U(τn)]−i
√

τηµ(x,τn)Uµ(x , τn) ,
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For the second-order integrator, two versions are available: their Butcher tableaux are
given by

0
1 1

1/2 1/2

0
1/2 1/2

0 1

and their corresponding algorithms are

Uµ(x, τn+1) = e−i 1
2 τ k̃1−i 1

2 τ k̃2−i·1·
√

τηµ Uµ(x, τn) ,

k̃1 =
∑

A

T A∇x,µ,AS[U(τn)] ,

k̃2 =
∑

A

T A∇x,µ,AS[Ũ
(2)

] ,

Ũ
(2)
µ (x, .) = e−i1·τ k̃1−i·1·

√
τηµ Uµ(x, τn) ,

[G. G. Batrouni et al. - Phys. Rev. D32 (1985), 2736]

Uµ(x, τn+1) = e−i1·τ k̃2−i·1·
√

τηµ Uµ(x, τn) ,

k̃2 =
∑

A

T A∇x,µ,AS[Ũ
(2)

] ,

Ũ
(2)
µ (x, .) = e−i 1

2 τ k̃1−i 1
2
√

τηµ Uµ(x, τn) ,

k̃1 =
∑

A

T A∇x,µ,AS[U(τn)] ,
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Concerning the third-order integrator, its Butcher tableau is

0
1/2 1/2

1 -1 2
1/6 2/3 1/6

while the algorithm reads

Uµ(x , τn+1) = e−i 1
6 τ k̃1−i 2

3 τ k̃2−i 1
6 τ k̃3−·1·i

√
τηµ Uµ(x , τn) ,

k̃1 =
∑

A

T A∇x,µ,AS[U(τn)] ,

k̃2 =
∑

A

T A∇x,µ,AS[Ũ
(2)

] , Ũ
(2)
µ (x , .) = e−i 1

2 τ k̃1−i 1
2
√

τηµ Uµ(x , τn) ,

k̃3 =
∑

A

T A∇x,µ,AS[Ũ
(3)

] , Ũ
(3)
µ (x , .) = e−i·(-1)·τ k̃1−i·2·τ k̃2−i·1·

√
τηµ Uµ(x , τn) ,
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Finally, the fourth-order integrator: its Butcher tableau

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

and the related algorithm

Uµ(x , τn+1) = e−i 1
6 τ k̃1−i 1

3 τ k̃2−i 1
3 τ k̃3−i 1

6 τ k̃4−i·1·
√

τηµ Uµ(x , τn) ,

k̃1 =
∑

A

T A∇x,µ,AS[U(τn)] ,

k̃2 =
∑

A

T A∇x,µ,AS[Ũ
(2)

] , Ũ
(2)
µ (x , .) = e−i 1

2 τ k̃1−i 1
2
√

τηµ Uµ(x , τn) ,

k̃3 =
∑

A

T A∇x,µ,AS[Ũ
(3)

] , Ũ
(3)
µ (x , .) = e−i 1

2 τ k̃2−i 1
2
√

τηµ Uµ(x , τn) ,

k̃4 =
∑

A

T A∇x,µ,AS[Ũ
(4)

] , Ũ
(4)
µ (x , .) = e−i·1·τ k̃3−i·1·

√
τηµ Uµ(x , τn) ,
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Question: on one hand, higher-order integrators allow larger time steps,
thus reducing the number of iterations; on the other hand, every iteration now
asks for more operations: are these more involved algorithms still worth?

Yes!

Let’s count the number of sweeps per iteration to prove it.

First-order integrator:

1 Langevin dynamics
1 zero-modes subtraction
1 stochastic gauge-fixing
3 sweeps per iteration

Second-order integrator:

2 Langevin dynamics
1 zero-modes subtraction
1 stochastic gauge-fixing
4 sweeps per iteration

In the second case, at fixed accuracy, experience reveals that the number of
iterations is 4 times smaller than in the first one so that getting results takes
altogether three times less .
With the third-order integrator, the ratio old/new becomes 5.
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After introducing the discrete time step τ , the equilibrium action of the
Langevin process can be written as

S̄[φ] = S0[φ] + τS1[φ] + τ 2S2[φ] + . . . ,

where S0[φ] is the action for continuum stochastic time.

To determine S̄[φ], one has to solve the Fokker-Planck equation at
equilibrium

1
τ

[
Pc(τn+1)− Pc(τn)

]
=

1
τ

+∞∑
n=1

∑
x1...xn

∂

∂φ(x1)
· · · ∂

∂φ(xn)
∆x1...xn Pc(τn) ,

where

∆x1...xn =
1
n!
〈fx1 . . . fxn 〉η ,

with

fx = τ
∂S[φ]

∂φ(x)
+
√
τ η(x , τn) .
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The solution at first order in τ reads

S̄[φ] = S0[φ] +
1
4

∑
x

τ

[
2
∂2S[φ]

∂φ(x)
−

(
∂S[φ]

∂φ(x)

)2]
+ . . . ,

where the contributions proportional to τ have been obtained from terms like

〈 ∂S[φ]

∂φ(x)

∂S[φ]

∂φ(y)
〉 ,

〈η(x , τn)η(y , τn)
∂S[φ]

∂φ(z)
〉 ,

〈η(x , τn)η(y , τn)η(z, τn)η(q, τn)〉 ,

+ all possible permutations of position indices.

Christian Torrero Towards a determination of cSW using NSPT



The second-loop contribution to the csw coefficient
Higher-order integrators for NSPT

Summary and outlook

Algorithms
The non-Abelian shift
A few, preliminary results

However, in the case of group variables, the derivatives no longer commute
but they rather obey the algebra of the Lie group

[∇A,∇B] = −fABC∇C ,

so that the equilibrium distribution gets another contribution proportional to τ

S̄[U] =

[
1 +

τ

12
CA

]
S0[U] +

1
4
τ

∑
x,A

∇2
x,AS[U] + . . . .

Given to this, the second-order algorithm - for example - is modified as

Uµ(x , τn+1) = e−i 1
2

[
1+

τCA
6β

][
τ k̃1+τ k̃2

]
−i
√

τηµUµ(x , τn) .

[G. G. Batrouni et al. - Phys. Rev. D32 (1985), 2736]
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One-loop plaquette results from the first-, second-, third- and fourth-order
integrator at L=4 (analytical value reads -1.9922)

Order of integrator Time steps 1st loop
1 10, 15, 20 -1.9930(7)
2 50, 60, 70 -1.9922(6)
3 90, 100, 110 -1.9918(10)
4 110, 122, 130 -1.9914(10)

Many-loop plaquette results from the first- and second-order integrator at L=4
(analytical values read -1.9922 and -1.2037 for first and second loop
respectively)

Order of integrator 1st loop 2nd loop 3rd loop 4th loop
1 -1.9930(7) -1.2027(18) -2.8781(67) -8.994(30)
2 -1.9922(6) -1.2002(17) -2.8778(62) -8.990(28)
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Summary

NSPT estimate of c(2)
SW appears feasible (at least in

principle)

Higher-order integrators significantly reduce computer time
without any loss in numerical accuracy

Outlook

Including sea quarks and determining the improved critical
mass at three loops

Fixing the problems with the non-Abelian shift and
computing the non-Abelian contributions at higher loops
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Contributions to lattice QCD action

Wilson gauge part

SG = β
∑
n,µ,ν
µ>ν

(
1− Tr

2Nc

(
Uµν(n) + U†

µν(n)
))

.

fermionic part

SF = −1
2

∑
f

∑
x,µ

[
ψ̄f (x)(r − γµ)Uµ(x)ψf (x + µ̂) + ψ̄f (x)(r + γµ)Uµ(x)†ψf (x)

]
+

+
∑

f

∑
x

(4r + m̂0)ψ̄f (x)ψf (x) ,
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The odd shape of the noise term comes from two further steps:

when discretizing, the normalization condition becomes

〈ηa(x , τn)η
a′(x ′, τn′ )〉 =

2

τ
δx,x′δn,n′δa,a′ .

Then one introduces η̃ =
√

τη so that

〈η̃a(x , τn)η̃
a′(x ′, τn′ )〉 = 2δx,x′δn,n′δa,a′ .

Wilson gauge action SW reads

SG = β
∑

n,µ,ν
µ>ν

(
1−

Tr

2Nc

(
Uµν(n) + U†µν(n)

))
,

so that, when computing the group derivative, the awkward prefactor τβ appears.

To compensate for this, the time step τ is replaced by τ ′ = τβ so that

η̃ =
√

τη =

√
τ ′

β
η → η =

√
β

τ ′
η̃
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When acting on the trace term, the group derivative implies the computation
of an object like

∇x,µ,ATr [ln(M)] = Tr [M−1∇x,µ,AM] ,

which is accomplished in two steps:

the inversion of the operator M is obtained by means of the well-known
formula

M−1 = − M−1
0 +

− M−1
0 M1M−1

0 + ([M−1]1)

− M−1
0 (M1[M

−1]1 + M2M−1
0 ) + ([M−1]2)

+ . . . ;

the trace is computed via auxiliary gaussian fields

Tr [M−1∇x,µ,AM] =
∑
i, j

M−1
ij (∇x,µ,AM)ji =

∑
i, j,k

ξiM
−1
ij (∇x,µ,AM)jkξk ,

where 〈ξiξj〉 = δij .
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Visual comparison among plaquette data from different integrators at lattice extent L=4
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On the left, first-loop results for the lattice plaquette: blue dots are the data obtained
from the first-order integrator, red and black diamonds correspond to the second- and
third-order one respectively. On the right, the corresponding τ → 0 results compared
to the analytical one (black cross).
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