Numerical Investigation of the 2-D $\mathcal{N}\!=\!2$ Wess-Zumino Model

Christian Wozar

Theoretisch-Physikalisches Institut FSU Jena

with Georg Bergner, Tobias Kästner, Sebastian Uhlmann and Andreas Wipf

14.07.2008 / Lattice 2008 / Williamsburg

seit 1558

Introduction

2 The model

- 3 Limitations of improvement
- Weak coupling results
- Intermediate coupling results

Motivation (Physics)

- The lattice breaks supersymmetry explicitly.
- No spontaneous supersymmetry breaking of the continuum model expected.
 ⇒ Supersymmetry restoration in continuum limit can be analyzed.
- In former works (M. Beccaria et al. (1998), S. Catterall and S. Karamov (2003)) only Wilson fermions with Nicolai improved action were used. Problems at stronger couplings.
- Effects of Nicolai improvement?

Motivation (Physics)

- The lattice breaks supersymmetry explicitly.
- No spontaneous supersymmetry breaking of the continuum model expected.
 ⇒ Supersymmetry restoration in continuum limit can be analyzed.
- In former works (M. Beccaria et al. (1998), S. Catterall and S. Karamov (2003)) only Wilson fermions with Nicolai improved action were used. Problems at stronger couplings.
- Effects of Nicolai improvement?

2. Motivation (Algorithms)

- Explicit investigation and improvement of the used algorithms, cf. e.g. Bergner et al. (2007) for WZ model in 1*d* with different discretizations.
- High precision measurements available in lower dimensions.

• The continuum action

$$\begin{split} S_{\rm cont} &= \int d^2 x \left(2 \bar{\partial} \bar{\varphi} \partial \varphi + \frac{1}{2} |W'(\varphi)|^2 + \bar{\psi} M \psi \right), \\ M &= \gamma^z \partial + \gamma^{\bar{z}} \bar{\partial} + W'' P_+ + \overline{W}'' P_- \end{split}$$

allows for 4 real supersymmetries, $\varphi = \varphi_1 + i\varphi_2$.

• The continuum action

$$\begin{split} S_{\rm cont} &= \int d^2 x \left(2 \bar{\partial} \bar{\varphi} \partial \varphi + \frac{1}{2} |W'(\varphi)|^2 + \bar{\psi} M \psi \right), \\ M &= \gamma^z \partial + \gamma^{\bar{z}} \bar{\partial} + W'' P_+ + \overline{W}'' P_- \end{split}$$

allows for 4 real supersymmetries, $\varphi = \varphi_1 + i\varphi_2$. • We use $W(\varphi) = \frac{1}{2}m\varphi^2 + \frac{1}{3}g\varphi^3$ with dimensionless coupling $\lambda = \frac{g}{m}$.

- $\lambda = 0$ corresponds to free theory
 - \Rightarrow perturbative expansion in λ possible.

Using the Nicolai variable $\xi_x = 2(\bar{\partial}\bar{\varphi})_x + W_x$ an action on the lattice preserving one supersymmetry is given by

$$S = \frac{1}{2} \sum_{x} \bar{\xi}_{x} \xi_{x} + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}$$

with $W_x = W'(\varphi_x)$, $W_{xy} := \partial W_x / \partial \varphi_y$ and

$$M_{xy} = \begin{pmatrix} W_{xy} & 2\bar{\partial}_{xy} \\ 2\partial_{xy} & \overline{W}_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \\ \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \end{pmatrix}$$

Using the Nicolai variable $\xi_x = 2(\bar{\partial}\bar{\varphi})_x + W_x$ an action on the lattice preserving one supersymmetry is given by

$$S = \frac{1}{2} \sum_{x} \bar{\xi}_{x} \xi_{x} + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}$$

with $W_x = W'(\varphi_x)$, $W_{xy} := \partial W_x / \partial \varphi_y$ and

$$M_{xy} = \begin{pmatrix} W_{xy} & 2\bar{\partial}_{xy} \\ 2\partial_{xy} & \overline{W}_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \\ \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \end{pmatrix}.$$

In terms of the original fields the action reads

$$S = \sum_{x} \left(2 \left(\bar{\partial} \bar{\varphi} \right)_{x} (\partial \varphi)_{x} + \frac{1}{2} \left| W_{x} \right|^{2} + W_{x} (\partial \varphi)_{x} + \overline{W}_{x} (\bar{\partial} \bar{\varphi})_{x} \right) + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}.$$

The difference to a straightforward discretization is given by surface terms

$$\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W_{x}}(\bar{\partial} \bar{\varphi})_{x} \right).$$

The model The lattice discretization

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

• Symmetric derivative $(\partial_{\mu}^{S})_{xy} = \frac{1}{2}(\delta_{x+\hat{\mu},y} - \delta_{x-\hat{\mu},y})$ with standard Wilson term $W_x = W'(\varphi_x) - \frac{r}{2}(\Delta \varphi)_x$ using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

The model The lattice discretization

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

Symmetric derivative (∂^S_μ)_{xy} = ½(δ_{x+μ̂,y} − δ_{x−μ̂,y}) with standard Wilson term W_x = W'(φ_x)−½(Δφ)_x using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

• Symmetric derivative ∂^{S} with twisted Wilson term $W_{x} = W'(\varphi_{x}) + \frac{ir}{2}(\Delta \varphi)_{x}$.

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{2\partial_{xy}} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} + \gamma_3 \frac{r}{2} \Delta_{xy}$$

The choice $r = 2/\sqrt{3}$ renders the mass of the free theory exact up to $\mathcal{O}(a^4)$.

The model The lattice discretization

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

Symmetric derivative (∂^S_μ)_{xy} = ½(δ_{x+μ̂,y} − δ_{x−μ̂,y}) with standard Wilson term W_x = W'(φ_x)−½(Δφ)_x using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{2\partial_{xy}} & \frac{\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

• Symmetric derivative ∂^{S} with twisted Wilson term $W_{x} = W'(\varphi_{x}) + \frac{ir}{2}(\Delta \varphi)_{x}$.

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)} \delta_{xy} \end{pmatrix} + \gamma_3 \frac{r}{2} \Delta_{xy}$$

The choice $r = 2/\sqrt{3}$ renders the mass of the free theory exact up to $\mathcal{O}(a^4)$. • SLAC derivative $\partial_{x\neq y} = (-1)^{x-y} \frac{\pi/N}{\sin(\pi(x-y)/N)}$, $\partial_{xx} = 0$ with M_{xy} unchanged.

 \Rightarrow Simulate the (un)improved model with these different discretizations! We use a combination of fourier accelerated HMC with higher-order integrators.

For dynamical simulations of the improved model the bosonic action is fixed to $\langle S_B \rangle = N = \#$ lattice points.

With SLAC fermions at different coupling strenghts we observe the improvement term $\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W}_{x}(\overline{\partial} \overline{\varphi})_{x} \right)$:

For dynamical simulations of the improved model the bosonic action is fixed to $\langle S_B \rangle = N = \#$ lattice points.

With SLAC fermions at different coupling strenghts we observe the improvement term $\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W}_{x}(\overline{\partial} \overline{\varphi})_{x} \right)$:

Limitations of improvement

MC history of the improvement term and the fermion determinant at $\lambda = 1.4$ and $\lambda = 1.7$ ($m_{\text{latt}} = 0.6$, $N = 15 \times 15$), $\langle S_B \rangle \approx N$ in each run:

Analyzing the distribution of the fields in momentum space at $\lambda=1.4$ and $\lambda=$ 1.7:

 \Rightarrow For too large couplings λ (or lattice masses m_{latt}) the simulation samples only unphysical UV dominated configurations.

 \Rightarrow At larger couplings a careful analysis of the improvement term during the simulation must be ensured.

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6-10^7 configs) and fermions (statistics 10^4 configs)

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6-10^7 configs) and fermions (statistics 10^4 configs)

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6-10^7 configs) and fermions (statistics 10^4 configs)

 \Rightarrow Improved and unimproved model can not be distinguished even with that high statistics.

 \Rightarrow Bosonic and fermionic masses coincide.

Extrapolation from finite lattice spacing to the continuum using Wilson and twisted Wilson fermions for the improved model (m = 15, $\lambda = 0.3$):

 \Rightarrow All formulations yield the same continuum result.

Weak coupling results

The perturbative one-loop result $m_{\text{ren}}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

Weak coupling results

The perturbative one-loop result $m_{\text{ren}}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

Weak coupling results Comparing with perturbation theory

The perturbative one-loop result $m_{\rm ren}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

 \Rightarrow All different formulations coincide with perturbation theory. \Rightarrow The supersymmetric continuum limit is reached.

Intermediate coupling results

Intermediate coupling results

Intermediate coupling results

Results

- With very high statistics bosonic and fermionic masses can not be distinguished in the weak to intermediate coupling region for both improved and unimproved formulation.
- For intermediate coupling the improved action in closer to the continuum limit (at least for SLAC fermions).
- The "Nicolai improvement" introduces new problems due to the sampling of unphysical (high-momentum) states. (no real improvement?)
- Even without improvement the correct continuum limit is reached.

Results

- With very high statistics bosonic and fermionic masses can not be distinguished in the weak to intermediate coupling region for both improved and unimproved formulation.
- For intermediate coupling the improved action in closer to the continuum limit (at least for SLAC fermions).
- The "Nicolai improvement" introduces new problems due to the sampling of unphysical (high-momentum) states. (no real improvement?)
- Even without improvement the correct continuum limit is reached.

Outlook

- Further algorithmic improvements (PHMC, multiple r.h.s. solvers) to obtain results for strong coupling ($\lambda > 1.5$).
- Use the elaborate algorithms to explore the $\mathcal{N} = 1$ WZ model in d = 2 (SUSY breaking expected).

More on this model including finite size effects, discussion of the sign problem and technical details can be found under arXiv:0807.1905 [hep-lat]

Thank you!

... and please be cautious when using Nicolai improved actions.