Overlap construction for Weyl fermions

```
christof.gattringer@uni-graz.at
```

C. Gattringer, M. Pak, Nucl. Phys. B 2008, arXiv:0802.2496 [hep-lat]
C. Gattringer, M. Pak, PoS LAT2007, arXiv:0710.5371 [hep-lat]
P. Hasenfratz, R. von Allmen, JHEP 2008, arXiv:0710.5346 [hep-lat]
C. Gattringer, L. Liptak, preliminary results

- Chiral vector-like theory on the lattice: $\gamma_{5} D+D \gamma_{5}=D \gamma_{5} D$
- Different projectors are acting from the left and the right sides:

$$
\begin{aligned}
& P_{+}=\frac{1}{2}\left[1+\gamma_{5}\right] \quad \ldots \quad \text { independent of } U_{\mu} \\
& \widehat{P}_{-}=\frac{1}{2}\left[1-\gamma_{5}(1-D)\right] \quad \ldots \quad \text { depends on } U_{\mu}
\end{aligned}
$$

- In the path integral we need to integrate over fermion fields obeying

$$
\bar{\psi} P_{+}=\bar{\psi} \quad, \quad \widehat{P}_{-} \psi=\psi
$$

\Rightarrow The measure $\mathcal{D}[\psi]$ depends on the gauge field.

- Using vector/matrix notation for color, flavor and Dirac indices ...

$$
\begin{aligned}
& S[\bar{\psi}, \psi]=\int d^{4} x \bar{\psi}(x) \gamma_{\mu}\left[\vec{\partial}_{\mu}+i A_{\mu}\right] \psi(x) \\
& =\frac{1}{2} \int d^{4} x\left(\bar{\psi}(x) \gamma_{\mu}\left[\vec{\partial}_{\mu}+i A_{\mu}\right] \psi(x)-\psi(x)^{T} \gamma_{\mu}^{T}\left[\overleftarrow{\partial}_{\mu}+i A_{\mu}^{T}\right] \bar{\psi}(x)^{T}\right)
\end{aligned}
$$

- We switch to a symmetric/quadratic representation

$$
S[\Psi]=\frac{1}{2} \int d^{4} x \Psi(x)^{T} \widetilde{D} \Psi(x)
$$

with

$$
\Psi=\binom{\psi}{\bar{\psi}^{T}} \quad, \quad \widetilde{D}=\left[\begin{array}{cc}
0 & -\gamma_{\mu}^{T}\left[\overleftarrow{\partial}_{\mu}+i A_{\mu}^{T}\right] \\
\gamma_{\mu}\left[\vec{\partial}_{\mu}+i A_{\mu}\right] & 0
\end{array}\right]
$$

Symmetry generators for the quadratic representation

- Our theory is invariant under flavor singlet vector and chiral transformations. In the quadratic representation the generators are (unit matrices in flavor space are suppressed):

$$
\Gamma_{V}=\left[\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right] \quad, \quad \Gamma_{5}=\left[\begin{array}{cc}
\gamma_{5} & 0 \\
0 & \gamma_{5}
\end{array}\right]
$$

- Both symmetries are manifest as vanishing anti-commutators:

$$
\Gamma_{V} \widetilde{D}+\widetilde{D} \Gamma_{V}=0 \quad, \quad \Gamma_{5} \widetilde{D}+\widetilde{D} \Gamma_{5}=0
$$

- Projection to left-handed Weyl components

$$
\widetilde{D}_{-}=P_{-} \widetilde{D}=\widetilde{D} P_{-} \quad \text { with } \quad P_{-}=\left[\begin{array}{cc}
\frac{1}{2}\left[\mathbf{1}-\gamma_{5}\right] & 0 \\
0 & \frac{1}{2}\left[\mathbf{1}+\gamma_{5}\right]
\end{array}\right]
$$

Using RG transformations to map the symmetries onto the lattice

- Using an RG/blocking transformation one can map the continuum symmetries onto the lattice (lattice Dirac operator D, lattice field Φ):

$$
e^{-\frac{1}{2} \Phi^{T} D \Phi}=\int \mathcal{D}[\Psi] e^{-\left(\Phi-\Psi^{B}\right)^{T} E^{-1}\left(\Phi-\Psi^{B}\right)} e^{-S[\Psi]}
$$

- Two Ginsparg-Wilson relations replace the anti-commutators:

$$
\begin{aligned}
\Gamma_{V} D+D \Gamma_{V} & =D\left(E \Gamma_{V}+\Gamma_{V} E\right) D / 2 \\
\Gamma_{5} D+D \Gamma_{5} & =D\left(E \Gamma_{5}+\Gamma_{5} E\right) D / 2
\end{aligned}
$$

- The generators of the corresponding lattice symmetries are:

$$
\begin{aligned}
\widehat{\Gamma}_{V} & =\Gamma_{V}\left[\mathbf{1}-\left(E \Gamma_{V}+\Gamma_{V} E\right) D / 4\right] \\
\widehat{\Gamma}_{5} & =\Gamma_{5}\left[\mathbf{1}-\left(E \Gamma_{5}+\Gamma_{5} E\right) D / 4\right]
\end{aligned}
$$

- Jacobians of these lattice generators determine the anomalies.

The role of the blocking kernel E

- The key insight of Hasenfratz and von Allmen (JHEP 2008):

1. All symmetries that are anomalous in the target theory must be broken by the blocking prescription.
2. Other global symmetries may be broken if convenient.

- Here this implies for the singlet transformations:

$$
\Gamma_{V} E-E \Gamma_{V}=0 \quad, \quad \Gamma_{5} E-E \Gamma_{5}=0
$$

- Hasenfratz and von Allmen suggest to block with:

$$
E=i\left[\begin{array}{cc}
\varepsilon^{c} \otimes \bar{C} \otimes \varepsilon^{f} & 0 \\
0 & \varepsilon^{c} \otimes \bar{C} \otimes \varepsilon^{f}
\end{array}\right]
$$

- The problem is to find a common solution for both GW equations:

$$
\Gamma_{5} D+D \Gamma_{5}=D \Gamma_{5} E D \quad, \quad \Gamma_{V} D+D \Gamma_{V}=D \Gamma_{V} E D
$$

- Our solution is given by:

$$
D=E-A\left(E \Gamma_{5} A E \Gamma_{5} A\right)^{-1 / 2}=E-A\left(E \Gamma_{V} A E \Gamma_{V} A\right)^{-1 / 2}
$$

- The two expressions for D are identical since

$$
A \equiv E-D_{W}
$$

obeys

$$
E \Gamma_{5} A E \Gamma_{5}=E \Gamma_{V} A E \Gamma_{V}=A^{\dagger}
$$

- For the kernel of the overlap projection we use a modified Wilson operator for two flavors:

$$
D_{W}=\left[\begin{array}{cc}
i \varepsilon^{c} S \otimes \bar{C} \otimes \varepsilon^{f} & -V_{\mu}^{T} \otimes \gamma_{\mu}^{T} \otimes \mathbf{1}^{f} \\
V_{\mu} \otimes \gamma_{\mu} \otimes \mathbf{1}^{f} & i S \varepsilon^{c} \otimes \bar{C} \otimes \varepsilon^{f}
\end{array}\right]
$$

where

$$
\begin{aligned}
& V_{\mu}(x, y)=\frac{1}{2}\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}-U_{\mu}(x-\hat{\mu})^{\dagger} \delta_{x-\hat{\mu}, y}\right] \\
& S(x, y)=4 \mathbf{1}^{c} \delta_{x, y}-\frac{1}{2} \sum_{\mu=1}^{4}\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}+U_{\mu}(x-\hat{\mu})^{\dagger} \delta_{x-\hat{\mu}, y}\right]
\end{aligned}
$$

- Our overlap operator obeys the two GW equations and is $\widehat{\Gamma}_{5}$-hermitian \Rightarrow correct axial anomaly (Hasenfratz and von Allmen).

Technicalities

- The key identity $E \Gamma_{5} A E \Gamma_{5}=E \Gamma_{V} A E \Gamma_{V}=A^{\dagger}$ follows from using

$$
\begin{aligned}
& U^{T}=-\varepsilon^{c} U^{\dagger} \varepsilon^{c} \quad \text { for } \quad U \in S U(2) \\
& V_{\mu}^{T}=\varepsilon^{c} V_{\mu} \varepsilon^{c} \quad, \quad S^{T}=-\varepsilon^{c} S \varepsilon^{c} \\
& E=-E^{T}=E^{\dagger}=E^{-1} \\
& E \Gamma_{5}=\Gamma_{5} E \quad, \quad E \Gamma_{V}=\Gamma_{V} E
\end{aligned}
$$

Physical and doubler sectors

- Re-introducing a lattice spacing a one shows for the free case that:

$$
\begin{array}{ll}
D=D_{\text {cont }}+\mathcal{O}(a) & \text { for the physical sector } \\
D=\frac{2}{a} E+\mathcal{O}(1) & \text { for the doubler sectors }
\end{array}
$$

- The blocking matrix E has eigenvalues ± 1 which implies that the doublers end up at $\pm 2 / a$.
- When denoted in terms of the usual 4 -spinors, the term that removes the doublers reads:

$$
i \frac{2}{a}\left[\psi^{T} \epsilon^{c} \otimes \bar{C} \otimes \epsilon^{f} \psi+\bar{\psi} \epsilon^{c} \otimes \bar{C} \otimes \epsilon^{f} \bar{\psi}^{T}\right]
$$

Projection to left-handed Weyl fermions

- Weyl fermions are obtained by projection with the same projector as used in the continuum

$$
D_{-}=P_{-} D=D P_{-} \quad \text { with } \quad P_{-}=\left[\begin{array}{cc}
\frac{1}{2}\left[\mathbf{1}-\gamma_{5}\right] & 0 \\
0 & \frac{1}{2}\left[\mathbf{1}+\gamma_{5}\right]
\end{array}\right]
$$

- This equation follows for our overlap operator from $P_{-}=\frac{1}{2}\left[\mathbf{1}-\Gamma_{V} \Gamma_{5}\right]$ and the list of identities given above.
- A single gauge field independent projector is sufficient to project to Weyl fermions. No additional gauge dependent counterterm is necessary to make the effective fermion action gauge invariant.
- Hasenfratz and von Allmen: The projected Weyl operator gives rise to a fermion number anomaly.

Representation via the matrix sign function

- The overlap operator may also be written as:

$$
D=E-E \Gamma_{5} \operatorname{sign}\left(E \Gamma_{5} A\right)=E-E \Gamma_{V} \operatorname{sign}\left(E \Gamma_{V} A\right)
$$

- The spectrum of the argument in the square root is in the free case bounded by 1 from below (as for the old overlap).
- Thus we expect similar locality and numerical properties as for the old overlap operator.

The overlap operator is local:

- We analyze 2 flavors of fermions with gauge group $\operatorname{SU}(2)$ using the RG prescription of Hasenfratz and von Allmen.
- Vector and axial symmetries give rise to two GW-type of equations for the lattice Dirac operator.
- We solve the two equations using a generalized overlap construction.
- In addition our Dirac operator obeys the additional constraints necessary for the proper projection to the left-handed Weyl components.
- The chiral gauge theory has a simple fermion measure and the correct anomaly structure including fermion number violation.
- The overlap operator has decent numerical and locality properties.

