# On the phase diagram of the Higgs SU(2) model

C. Bonati, G. Cossu, A. D'Alessandro,

M. D'Elia, A. Di Giacomo



## Summary

the model (notations)



## Summary

the model (notations)

features of the model



the model (notations)

features of the model

previous results in literature



## Summary

the model (notations)

features of the model

previous results in literature

new results



## Summary

the model (notations)

features of the model

previous results in literature

new results

conclusions

SU(2) gauge theory coupled with a Higgs doublet in fundamental representation

$$S = S_W[U] - \frac{\kappa}{2} \sum_{x,\mu} \left\{ \Phi^{\dagger}(x) U_{\mu}(x) \Phi(x+\hat{\mu}) + \Phi^{\dagger}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \Phi(x) \right\} + \lambda \sum_{x} [\Phi^{\dagger}(x) \Phi(x) - 1]^2$$

SU(2) gauge theory coupled with a Higgs doublet in fundamental representation

$$S = S_W[U] - \frac{\kappa}{2} \sum_{x,\mu} \left\{ \Phi^{\dagger}(x) U_{\mu}(x) \Phi(x+\hat{\mu}) + \Phi^{\dagger}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \Phi(x) \right\} + \lambda \sum_{x} [\Phi^{\dagger}(x) \Phi(x) - 1]^2$$

in this work  $\lambda = \infty$ 

SU(2) gauge theory coupled with a Higgs doublet in fundamental representation

$$S = S_W[U] - \frac{\kappa}{2} \sum_{x,\mu} \left\{ \Phi^{\dagger}(x) U_{\mu}(x) \Phi(x+\hat{\mu}) + \Phi^{\dagger}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \Phi(x) \right\}$$

SU(2) gauge theory coupled with a Higgs doublet in fundamental representation

$$S = S_W[U] - \frac{\kappa}{2} \sum_{x,\mu} \left\{ \Phi^{\dagger}(x) U_{\mu}(x) \Phi(x+\hat{\mu}) + \Phi^{\dagger}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \Phi(x) \right\}$$

$$\tilde{\Phi}(x) = i\sigma_2 \Phi(x)^* \quad \phi(x) = \begin{pmatrix} \tilde{\Phi}_1(x) & \Phi_1(x) \\ \tilde{\Phi}_2(x) & \Phi_2(x) \end{pmatrix}$$
$$\Phi^{\Lambda} = \Lambda \Phi \longrightarrow \phi^{\Lambda} = \Lambda \phi$$

SU(2) gauge theory coupled with a higgs doublet in fundamental representation

Limiting cases:

$$\label{eq:k} \kappa = 0 \longrightarrow \begin{array}{c} SU(2) \text{ gauge theory} \\ \text{confinement} \end{array}$$

Limiting cases: •  $\kappa = 0 \longrightarrow SU(2)$  gauge theory confinement  $O(4) \sigma$ -model •  $\beta = \infty \longrightarrow$  spontaneous symmetry breaking

Limiting cases: SU(2) gauge theory  $\kappa = 0 \longrightarrow$ confinement  $O(4) \sigma$ -model  $\beta = \infty \longrightarrow$  spontaneous symmetry breaking  $\beta = 0 \& \text{unitary} \longrightarrow \text{indipendent } U_{\mu}(x)'s$ 

Limiting cases: SU(2) gauge theory  $\kappa = 0 \longrightarrow$ confinement  $O(4) \sigma$ -model  $\beta = \infty \longrightarrow$  spontaneous symmetry breaking  $\beta = 0 \& \text{unitary} \longrightarrow \text{indipendent } U_{\mu}(x)'s$ 

#### Fradkin-Shenker theorem:

Phys. Rev. D 19, 3682 (1979)

in the red region local observables are analytic



Fradkin-Shenker theorem: Phys. Rev. D 19, 3682 (1979)

in the red region *local observables* are analytic

#### The theorem does not hold for *non-local* observables! Grady, Phys. Lett. B 626, 161 (2005)



#### Supposed phase diagram at zero temperature

Fradkin & Shenker Phys. Rev. D 19, 3682 (1979)



#### Supposed phase diagram at zero temperature

Fradkin & Shenker Phys. Rev. D **19**, 3682 (1979)



## Results in literature for the $\lambda = \infty$ case

first numerical study on 4<sup>4</sup> lattice seem to confirm theoretical prediction

Lang, Rebbi & Virasoro Phys. Lett. B 104, 294 (1981)

## Results in literature for the $\lambda = \infty$ case

first numerical study on 4<sup>4</sup> lattice seem to confirm theoretical prediction

Lang, Rebbi & Virasoro Phys. Lett. B 104, 294 (1981)

• claims of two-state signal on  $12^4$  lattice at  $\beta = 2.3$  (but with small statistics)

Langguth & Montvay Phys. Lett. B 165, 135 (1985)

## Results in literature for the $\lambda = \infty$ case

first numerical study on 4<sup>4</sup> lattice seem to confirm theoretical prediction

Lang, Rebbi & Virasoro Phys. Lett. B 104, 294 (1981)

• claims of two-state signal on  $12^4$  lattice at  $\beta = 2.3$  (but with small statistics)

Langguth & Montvay Phys. Lett. B **165**, 135 (1985)

• "the system exhibits a transient behavior up to L = 24 along which the order of the transition cannot be discerned" (also in this case  $\beta = 2.3$ )

Campos Nucl. Phys. B 514, 336 (1998)

Local observables analized

- plaquette
- Higgs-gauge interaction:  $\frac{1}{2} \text{Tr}[\phi^{\dagger}(x)U_{\mu}(x+\hat{\mu})\phi(x+\hat{\mu})]$

 $\blacksquare Z_2$  monopoles







On the phase diagram of the Higgs SU(2) model – p. 11

## New results: $\beta = 2.5$



## New results: $\beta = 2.5$



### New results: $\beta = 3.5$





## New results: $\beta = 3.5$





## New results: $\beta = 30$



### New results: $\beta = 30$





Non-local observable analized

•  $\langle \mu \rangle$  magnetic monopole operator

Non-local observable analized  $\langle \mu \rangle$  magnetic monopole operator Studied using

$$\rho = \frac{\partial}{\partial \gamma} \log \langle \mu \rangle$$

Non-local observable analized  $\langle \mu \rangle$  magnetic monopole operator Studied using

$$\rho = \frac{\partial}{\partial \gamma} \log \langle \mu \rangle$$

**Characteristic behavior** 

smooth crossover —> no singularity

• at transition  $\longrightarrow \min \rho \rightarrow -\infty$ 





## Conclusions

for all the β's simulated only a smooth crossover is seen

## Conclusions

- for all the β's simulated only a smooth crossover is seen
- it seem natural to suppose that the first-order line of transitions is not present in the  $\lambda=\infty$  case

## Conclusions

- for all the β's simulated only a smooth crossover is seen
- it seem natural to suppose that the first-order line of transitions is not present in the  $\lambda=\infty$  case
- conservative point of view: we have shown that, if it exists, the line of first order transitions ends for  $\beta$  much bigger than the value  $\beta_c \approx 2$  previously thought as critical