Nearly conformal electroweak sector with chiral fermions

Dániel Nógrádi

in collaboration with

Zoltán Fodor (Wuppertal), Kieran Holland (UoP)

Julius Kuti (UCSD), Chris Schroeder (UCSD)

Outline and motivation

- BSM Higgs sector
 - Heavy Higgs?
 - Strongly interacting EW symmetry breaking?
- Technicolor idea
 - Walking nearly conformal
 - Conformal
- Phase diagram of gauge theories (N_c, N_f, R)
 - QCD
 - SUSY YM
 - Other representations?
- Unparticles conformal hidden sector

Phase diagram (N_c, N_f, R)

(
$$\mathcal{N}=1$$
 YM is a special case)

Phase diagram (N_c, N_f, R) in perturbation theory

Fundamental: gray (Pallante, Neil, Jin, Deuzeman today, Holland Friday 3:50, Fleming Saturday 9:15)

2 antisym: blue 2 sym: red adjoint: green

(Sannino)

Technicolor paradigm

Need to know $N_f(\chi)$ for fixed N_c, R

A constraint from phenomenology: S-parameter $\sim dim(R)N_f$ should be small

SU(3) fundamental representation is ruled out (JLQCD: non-perturbative \sim perturbative)

SU(3) 2S representation produces right number of Goldstones from symmetry breaking

 $N_f(BZ) = 1.2$ $N_f(\chi) = 2.5$ $N_f(AS) = 3.3$

 $N_f = 2$ just below conformal window - could be walking

If really in conformal window: good for conformal technicolor

Our model

$$SU(3)$$
 $N_f = 2$ $R = 2S$

Simplest model with small S-parameter, 3 Goldstone-bosons (get eaten by W, Z), EW symmetry breaking works out

Chiral symmetry is important: use dynamical overlap fermions

Previous study: wilson fermions + Schrodinger functional: maybe conformal

Svetitsky (Friday 2:30) DeGrand (Friday 2:50)

Problems everyone in this business has to deal with

Small bare coupling (small volume): always free

Large bare coupling: always χSB

Staggered: taste breaking, effective N_f < naive N_f

Wilson: explicit χSB

Overlap: strong coupling phase diagram complicated, little is known very expensive

Most important question: how to distinguish χSB from conformal?

 χSB vs. conformal

Possible methods

- β -function from Schrodinger functional (Appelquist et al.)
- Locating finite T transition (Pallante et al.)
- ε -regime $\rho(\lambda)$ characteristics (Fodor/Holland/Kuti/DN/Schroeder)

 $\varepsilon\text{-regime}$ and Dirac spectrum

If χSB and $1/f_\pi < L < 1/m_\pi$

Can use chiral Lagrangian without kinetic term

Detailed prediction for microscopic Dirac spectral density $\zeta = \lambda \Sigma V$ and eigenvalue distributions in each Q topological sector, calculable with RMT

$$\rho_S(\zeta) = \frac{1}{\Sigma V} \rho\left(\frac{\zeta}{\Sigma V}\right) = \sum_{k=0}^{\infty} p_k(\zeta)$$

For macroscopic $\rho(\lambda)$: Banks-Casher: $\rho(0) = V\Sigma/\pi$

 $\varepsilon\text{-regime}$ and Dirac spectrum

In conformal case: no ε -regime or microscopic spectral density

 $\rho(\lambda) \sim \lambda^{3+\gamma}$

 γ anomalous dimension of $ar{\psi}\psi$

Unfortunately $p_k(\lambda)$ not known, in principle calculable (work in progress)

Effect of finite m and finite V also not known (work in progress)

 $\varepsilon\text{-regime}$ and Dirac spectrum

Strategy: simulate in real or would-be ε -regime and see if $\rho_S(\zeta)$ and/or $\rho(\lambda)$ is or is not consistent with RMT and/or conformal predictions

Algorithms for dynamical overlap

• Hungarian (reflection/refraction)

• Japanese (topology conserving with extra wilson fermion)

We need fix Q, Japanese algorithm cheaper: use that for initial study

Preliminary results, 6^4 volume, m = 0.05, O(100) configurations

What β ? Nothing so far in literature, need to start from scratch.

Scan strong coupling $\sim 4.5 < \beta < 5.5 \sim free$

For RMT one needs $m < \lambda_1$ to see dynamical fermions

Macroscopic spectral density

Microscopic spectral density from RMT

All our results are preliminary

2S representation seems not consistent with χSB

Reason can be too small volume, not really ε -regime

Caution! Have not measured any quantity f_{π}, m_{π}, \ldots

Conformal? More work needed!

Conclusion

First dynamical overlap simulation of 2S repr of SU(3)

If below conformal window: can predict narrow heavy Higgs particle without free parameters consistent with EW precision (Sparameter)

Measuring β -function will help, $\gamma(g)$.