Parton Distribution Amplitudes

An Update on Results and Non-perturbative Renormalisation

Dirk Brömmel

School of Physics and Astronomy University of Southampton Southampton UK

Lattice 2008

Williamsburg July 18th, 2008

Southampton School of Physics and Astronomy

Introduction

Distribution Amplitudes

Meson distribution amplitudes

- contain non-perturbative QCD effects appearing in hard exclusive processes
- are universal hadronic properties
- important for form factors at large q², B-decays
- \rightarrow Lattice can provide the lowest moments of the distribution amplitudes

This talk will cover

- an update on our previous results for pseudo-scalar distribution amplitudes: Kaon, π PoS(LAT07)369
- our first results on vector distribution amplitudes: K^* , ρ , ϕ (for longitudinal polarisation)

Introduction

Non-perturbative Renormalisation

Quantities like quark masses and weak matrix elements require renormalisation

to obtain meaningful physical results, convert bare lattice results to a continuum scheme like $\overline{\text{MS}}$.

Up to now we only renormalise perturbatively (known caveat)

We now use the <u>Rome-Southampton RI-MOM technique</u> – underlying idea: find a simple renormalisation condition useful for any regularisation, facilitating scheme changes. NPB445, 81

Use continuum perturbation theory to remove scale dependence and to perform matching to $\overline{\text{MS}}$. NPB662, 247, NPB667, 242

To improve statistics: use momentum sources . NPB544, 699

Dirk Brömmel (UKQCD/RBC Collaborations)	18.07.2008	<	臣	3

Introduction

Simulation Details

The presented work is part of the UKQCD/RBC programme, so we use

■ $N_{\rm f} = 2 + 1$ Domain Wall Fermions, $24^3 \times 64 \times 16$ and $16^3 \times 32 \times 16$

 $am_s = 0.04, am_q = 0.03, 0.02, 0.01, (0.005)$

corresponding to pion masses of

672 MeV, 557 MeV, 419 MeV, and 331 MeV

Physical strange quark is $am_s = 0.0343(16)$

Iwasaki gauge action, lattice spacing of $a^{-1} = 1.729(28)$ GeV, resulting in spatial volumes $(2.74 \text{fm})^3$ and $(1.83 \text{fm})^3$

Details on the ensembles: PRD76, 014504 and arXiv:0804.0473 For our other NPR projects, see(n) talks of

 \rightarrow Y. Aoki (non-exceptional momenta) and

 \rightarrow C. Kelly (B_K)

DAs are matrix elements of suitable non-local light cone operators, e.g. for pseudo-scalars

$$\langle 0 | \,\overline{q}(z) \gamma_{\mu} \gamma_{5} \,\mathcal{U} \, u(-z) \left| \Pi^{+}(p) \right\rangle \Big|_{z^{2}=0} = \mathrm{i} f_{\Pi} p_{\mu} \int_{-1}^{1} \mathrm{d}\xi \, e^{\mathrm{i}\xi p z} \, \phi_{\Pi}(\xi,\mu) \,, \quad \xi = 2x - 1 \,,$$
$$\int_{-1}^{1} \mathrm{d}\xi \, \phi_{\Pi}(\xi,\mu) = 1 \,, \quad \phi_{\Pi}(\xi,\mu) = \frac{3}{4} (1 - \xi^{2}) \left(1 + \sum a_{n}^{\Pi} C_{n}^{3/2}(\xi) \right) \,.$$

The lattice can only access moments thereof

$$\langle \xi^n \rangle_{\Pi} (\mu) = \int \mathrm{d}\xi \, \xi^n \, \phi_{\Pi}(\xi,\mu) \, ,$$

related to local matrix elements

$$\begin{split} \langle 0 | \mathcal{O}_{\{\mu\mu_1\cdots\mu_n\}}^5(0) \left| \Pi^+ \right\rangle &= -\mathrm{i}^{n+1} f_{\Pi} \, p_{\{\mu} \cdots p_{\mu_n\}} \left\langle \xi^n \right\rangle_{\Pi} \,, \\ \mathcal{O}_{\{\mu\mu_1\cdots\mu_n\}}^5(0) &= \overline{q}(0) \gamma_{\{\mu}\gamma_5 \overleftrightarrow{D}_{\mu_1} \cdots \overleftrightarrow{D}_{\mu_n\}} u(0) \,. \end{split}$$

Dirk Brömmel (UKQCD/RBC Collaborations)

Extracting Bare Values from Lattice Data - Pseudo-Scalars

$$\frac{\sum_{x} e^{\mathsf{i}\vec{p}\vec{x}} \langle 0| \mathcal{O}_{\{\mu\nu\}}^{5}(t,\vec{x}) \mathcal{P}^{\dagger}(0) | 0 \rangle}{\sum_{x} e^{\mathsf{i}\vec{p}\vec{x}} \langle 0| \mathcal{O}_{\rho}^{5}(t,\vec{x}) \mathcal{P}^{\dagger}(0) | 0 \rangle} \longrightarrow \mathsf{i} \frac{\mathcal{P}_{\mu}\mathcal{P}_{\nu}}{\mathcal{P}_{\rho}} \langle \xi \rangle^{\mathsf{bare}}$$

with directions $\mu = 1, 2, 3, \nu, \rho = 4$ and one unit of momentum

$$\frac{\sum_{x} e^{i\vec{\rho}\vec{x}} \langle 0| \mathcal{O}_{\{\rho\mu\nu\}}^{5}(t,\vec{x}) \mathcal{P}^{\dagger}(0) | 0 \rangle}{\sum_{x} e^{i\vec{\rho}\vec{x}} \langle 0| \mathcal{O}_{\sigma}^{5}(t,\vec{x}) \mathcal{P}^{\dagger}(0) | 0 \rangle} \longrightarrow -\frac{\rho_{\rho}\rho_{\mu}\rho_{\nu}}{\rho_{\sigma}} \left\langle \xi^{2} \right\rangle^{\text{bare}}$$

directions $ho, \mu = 1, 2, 3 \, (
ho
eq \mu)$, $u = \sigma = 4$ and two units of momenta

$$\longrightarrow \langle \xi \rangle_{\mathcal{K}}, \left\langle \xi^2 \right\rangle_{\mathcal{K}}, \left\langle \xi^2 \right\rangle_{\pi}$$

Extracting Bare Values from Lattice Data - Vectors

$$\frac{\sum_{x} e^{j\vec{\rho}\vec{x}} \langle 0 | \mathcal{O}_{\{\mu\nu\}}(t,\vec{x}) V_{\rho}^{\dagger}(0) | 0 \rangle}{\frac{1}{3} \sum_{i} \sum_{x} e^{j\vec{\rho}\vec{x}} \langle 0 | \mathcal{O}_{i}(t,\vec{x}) V_{i}^{\dagger}(0) | 0 \rangle} \longrightarrow -i \langle \xi \rangle^{\parallel,\text{bare}} \times \tanh((t - T/2)E_{V}) \frac{1}{2} \left(-g_{\mu\rho} \rho_{\nu} - g_{\nu\rho} \rho_{\mu} + \frac{2p_{\mu} p_{\nu} \rho_{\rho}}{m_{V}^{2}} \right)$$

directions $\mu = \rho = 1, 2, 3$, $\nu = 4$ and $\vec{p} = 0$

$$\frac{\sum_{x} e^{i\vec{\rho}\vec{x}} \langle 0| \mathcal{O}_{\{\rho\mu\nu\}}(t,\vec{x}) V_{\sigma}^{\dagger}(0) |0\rangle}{\frac{1}{3} \sum_{i} \sum_{x} e^{i\vec{\rho}\vec{x}} \langle 0| \mathcal{O}_{i}(t,\vec{x}) V_{i}^{\dagger}(0) |0\rangle} \longrightarrow -i \langle \xi^{2} \rangle^{\parallel,\text{bare}} \tanh\left((t-T/2)E_{V}\right) \\ \times \frac{1}{3} \left(-g_{\rho\sigma}p_{\mu}p_{\nu} - g_{\mu\sigma}p_{\rho}p_{\nu} - g_{\nu\sigma}p_{\rho}p_{\mu} + \frac{3p_{\rho}p_{\mu}p_{\nu}p_{\sigma}}{m_{V}^{2}}\right)$$

directions e.g. $\mu = \sigma = 2$, $\nu = 4$, $\rho = 1$ and one unit of momentum ($p_i \neq 0$, one unit)

$$\longrightarrow \left< \xi \right>_{K^*}, \left< \xi^2 \right>_{K^*}, \left< \xi^2 \right>_{\rho}, \left< \xi^2 \right>_{\phi}$$

Dirk Brömmel (UKQCD/RBC Collaborations)

Updated Results - Pseudo-scalars

 $\langle \xi \rangle_{K}^{\text{bare}} = 0.0238(7)(11) \ 0.0228(14)(11)$

Results compatible with prediction from lowest order χPT

$$\longrightarrow \langle \xi \rangle_{\mathcal{K}}$$
 proportional to $m_{s} - m_{q}$
this makes m_{s} correction easy

Southam School of Physic and Astronomy

Updated Results - Pseudo-scalars

э

PRELIMINARY Results – Vectors

$$\psi^{\text{ren}}(x) = Z_q^{\frac{1}{2}} \psi^{\text{bare}}(x)$$
 $m^{\text{ren}} = Z_m m^{\text{bare}}$ $\mathcal{O}^{\text{ren}} = Z_{\mathcal{O}} \mathcal{O}^{\text{bare}}$

$$\mathcal{O}_{\Gamma}(q) = \sum_{x,x'} e^{iqx} \,\overline{\psi}(x) J_{\Gamma}(x,x') \psi(x') \,,$$

bare Green's function between off-shell quarks for p = p', e.g. vector current

$$\begin{split} G_{\gamma_{\mu}}(\boldsymbol{\rho}) &= \left\langle \psi(\boldsymbol{\rho})\mathcal{O}(0)\overline{\psi}(\boldsymbol{\rho}) \right\rangle_{\boldsymbol{G}} \\ &= \sum_{\boldsymbol{x}} \left\langle \gamma_{5} \left[\sum_{\boldsymbol{y}} \boldsymbol{S}(\boldsymbol{x}|\boldsymbol{y}) \boldsymbol{e}^{\boldsymbol{i}\boldsymbol{\rho}\boldsymbol{y}} \right]^{\dagger} \gamma_{5} \gamma_{\mu} \left[\sum_{\boldsymbol{z}} \boldsymbol{S}(\boldsymbol{x}|\boldsymbol{z}) \boldsymbol{e}^{\boldsymbol{i}\boldsymbol{\rho}\boldsymbol{z}} \right] \right\rangle_{\boldsymbol{G}} \end{split}$$

realise:
$$\frac{S(p)_{x} = \sum_{y} S(x|y)e^{ipy}}{G_{\gamma_{\mu}}(p) = \sum_{x} \left\langle \gamma_{5}S(p)_{x}^{\dagger}\gamma_{5}\gamma_{\mu}S(p)_{x} \right\rangle_{G}} \longrightarrow \sum_{x'} D(x,x')S(p)_{x'} = e^{ipx}$$

н

Find the amputated Green's function

$$\Pi_{\mathcal{O}}(\boldsymbol{p}) = \langle \boldsymbol{S}(\boldsymbol{p}) \rangle_{\boldsymbol{G}}^{-1} \langle \boldsymbol{G}_{\mathcal{O}}(\boldsymbol{p}) \rangle_{\boldsymbol{G}} \langle \boldsymbol{S}(\boldsymbol{p}) \rangle_{\boldsymbol{G}}^{-1} ,$$

and the bare vertex amplitude

$$\Lambda^{\text{bare}}_{\mathcal{O}}(p) = rac{1}{12} \text{Tr} \left(\Pi_{\mathcal{O}}(p) \widehat{P}_{\mathcal{O}}
ight) \,.$$

The renormalisation condition, leading to Z_O , then is

$$\Lambda^{\text{ren}}_{\mathcal{O}}(\rho) = rac{Z_{\mathcal{O}}(\mu)}{Z_q} \Lambda^{\text{bare}}_{\mathcal{O}}(\rho) \Big|_{
ho^2 = \mu^2} = 1 \;, \qquad \Lambda_{ ext{QCD}} \ll \mu \ll 1/a$$

Projectors for bilinears: $1, \gamma_5, \sum \gamma_{\mu}, \sum \gamma_5 \gamma_{\mu}$ Projection for $\overline{\psi}(x)\gamma_{\{\mu} D_{\nu\}}\psi(x)$

$$\Lambda_{V2}(\boldsymbol{p}) = \frac{1}{6} \sum_{\substack{\mu,\nu\\\mu \leq \nu}} \left[\frac{\text{Tr} \left[\Pi_{\gamma_{\mu} D_{\nu}}(\boldsymbol{p})(\gamma_{\mu} + \gamma_{\nu}) \right]}{12(\hat{\boldsymbol{p}}^{\mu} + \hat{\boldsymbol{p}}^{\nu})} - \frac{\sum_{\rho \neq \mu,\nu} \text{Tr} \left[\Pi_{\gamma_{\mu} D_{\nu}}(\boldsymbol{p})\gamma_{\rho} \right]}{12 \sum_{\rho \neq \mu,\nu} \hat{\boldsymbol{p}}^{\rho}} \right]$$

.

Point vs Momentum Sources (I) - Amputated Vertex Functions

Statistical errors are drastically reduced.

Before: 4 sources, 75 configurations, momenta with **many** directions Now: 19 - 25 configurations, 1 direction

Discretisation Errors (I) - Amputated Vertex Functions

assume terms like ap and $(ap)^2$ $ap \rightarrow a\hat{p} = \sin(ap)$ and expanding $a\hat{p}$

$$\implies \mathcal{S} = \sum_{\mu} \frac{2\pi}{L_{\mu}} p_{\mu}^4$$

E

Southampton School of Physics and Astronomy

Discretisation Errors (I) – Amputated Vertex Functions

assume terms like ap and $(ap)^2$ $ap \rightarrow a\hat{p} = \sin(ap)$ and expanding $a\hat{p}$

$$\implies \mathcal{S} = \sum_{\mu} \frac{2\pi}{L_{\mu}} p_{\mu}^4$$

Dirk Brömmel (UKQCD/RBC Collaborations)

Discretisation Errors (II) - Amputated Vertex Functions

Different directions of the derivative w.r.t. momentum not compatible. More severe discretisation errors? Dependence on m_q much smaller.

Extrapolation in m_q

linear extrapolation of Z_m^{RI-MOM} to the chiral limit

Reducing Discretisation Effects

We extrapolate $(ap)^2 \rightarrow 0$ to remove lattice artefacts.

Point vs Momentum Sources (II) - Amputated Vertex Functions

Point vs Momentum Sources (II) - Amputated Vertex Functions

The number and position of sources seems to explain the the difference between the results of the point/momentum source technique.

better off when volume averaging

Summary and Outlook

PRELIMINARY Numbers

Summary of results, \overline{MS} ($\mu = 1.729 \text{ GeV}$). Statistical and systematic errors. Still perturbatively renormalised.

$\left< \xi^2 \right>_\pi$	0.278(15)(13)	0.280(35)(13)	0.269(39)
$\begin{array}{c} \langle \xi \rangle_{K} \\ \left\langle \xi^2 \right\rangle_{K} \end{array}$	0.03039(91)(174) 0.272(11)(13)	0.0291(18)(17) 0.289(17)(14)	0.0272(5) 0.260(6) PRD74:074501
$\left<\xi^2\right>_\rho$	0.240(36)(12)	0.249(27)(12)	
$\left< \xi \right>_{K^*}^\parallel$	0.0359(17)(22)	0.0312(12)(17)	0.033(2)(4) PoS(LAT07)144
$\left< \xi^2 \right>_{K^*}^{\parallel}$	0.252(17)(12)	0.260(13)(13)	
$\left<\xi^{2}\right>_{\phi}^{\parallel}$	0.250(10)(12)	0.249(11)(12)	
	24 ³	16 ³	

showed updates of our results for pseudo-scalar and vector DAs — anticipate to use non-perturbative renormalisation soon

- Rome-Southampton method with momentum sources has very small statistical errors even with moderate computational effort

 → possible to clearly see and investigate discretisation errors
- artefacts (esp. for derivatives) not yet fully understood
- we have other interesting projects, see(n) talks of
 - \rightarrow Y. Aoki (non-exceptional momenta) and

 \rightarrow C. Kelly (*B_K*)

э

UKQCD/RBC Collaborations

especially:

P.A. Boyle, D.B., M. Donnellan, J. Flynn, A. Jüttner, C. Kelly, C. Sachrajda