Controlling Residual Mass in Domain Wall Fermion Simulations

T. Blum, N. Christ, R. Mawhinney,
 D. Renfrew, P. Vranas

University of Connecticut, Columbia University,
Lawrence Livermore National Laboratory

Motivation

- Perform DWF simulations at strong coupling and with topology change for large volume simulations and thermodynamic simulations near transition
- Achieve selected mres at smaller L_{S} or smaller mres at selected L_{S}
- Measures chiral symmetry breaking due to overlap in 5'th dimension of chiral fermions nominally bound to walls
- Add weighting function to path integral to steer MD trajectories away from gauge configurations where 5D DWF transfer matrix has near unit eigenvalues
- Unit eigenvalues of 5D DWF transfer matrix lead to relatively undamped propagation and overlap in 5 'th dimension

Background

- 4D Wilson fermion, $D_{W}\left(N, m_{0}\right)$, zero modes lead to unit eigenvalues of 5D DWF transfer matrix
- transfer matrix is a function of hermitian Wilson Dirac operator, $H_{4}\left(m_{0}\right)$
- Add a Wilson fermion to action

$$
S_{G}(\beta, N)+S_{D W F}\left(N, L_{S}, m_{0}, m_{f}\right)+S_{P V}\left(N, L_{S}, m_{0}\right)+\mathbf{S}_{\mathbf{w}}\left(\overline{\mathbf{X}}, \mathbf{X} ; \mathbf{N}, \mathbf{m}_{\mathbf{0}}\right)
$$

- Vranas, 01006v2, 0606014v2: adds Wilson fermions
- Gap generated for $1<m_{0}<2$
-Lowest eigenvalues of $H_{4}\left(m_{0}\right)$ vs m_{0};
-Same physical lattice spacings;
-Quenched DWF sea fermions

Background (continued)

- Add a Wilson 'boson' with 'twisted' mass cancel unwanted 'ultraviolet' effects of Wilson fermion $\left.S_{W} \Rightarrow S_{W}\left(\bar{X}_{f}, X_{f}, U ; N,-m_{0}\right)-S_{W}\left(\bar{X}_{b}, X_{b}, U ; N,-m_{0}+\imath \epsilon_{b} \gamma_{5}\right)\right)$
- weighting term \mathcal{W} in path integral becomes

$$
\mathcal{W}=\operatorname{det}\left(H_{W}\left(m_{0}\right) H_{W}^{\dagger}\left(m_{0}\right)\right) \Rightarrow \mathcal{W}=\frac{\operatorname{det}\left(H_{W}\left(m_{0}\right) H_{W}^{\dagger}\left(m_{0}\right)\right)}{\operatorname{det}\left(H_{W}\left(m_{0}\right) H_{W}^{\dagger}\left(m_{0}\right)+\epsilon_{b}^{2}\right)}
$$

- Fukaya et al., 2006, Phys. Rev. D 094505
- demonstrates clear effect on near 0 eigenvalues but little effect on other eigenvalues

Current approach

- Now add a 'twisted' mass to Wilson fermion different from 'twisted' mass of Wilson 'boson' in order to prevent complete suppression of 0 eigenvalues and allow topology change

$$
\left.S_{W} \Rightarrow S_{W}\left(\bar{X}_{f}, X_{f}, U ; N,-m_{0}+\imath \epsilon_{f} \gamma_{5}\right)-S_{W}\left(\bar{X}_{b}, X_{b}, U ; N,-m_{0}+\imath \epsilon_{b} \gamma_{5}\right)\right)
$$

- weighting term now becomes

$$
\mathcal{W}=\frac{\operatorname{det}\left(H_{W}\left(-m_{0}\right) H_{W}^{\dagger}\left(-m_{0}\right)+\epsilon_{f}^{2}\right)}{\operatorname{det}\left(H_{W}\left(-m_{0}\right) H_{W}^{\dagger}\left(-m_{0}\right)+\epsilon_{b}^{2}\right)}=\prod_{i} \frac{\lambda_{i}^{2}+\epsilon_{f}^{2}}{\lambda_{i}^{2}+\epsilon_{b}^{2}}
$$

where λ_{i} are the eigenvalues of H_{W}

Current approach (continued)

- Little or no effect $(\mathcal{V} \simeq 1)$ if
- $0<\epsilon_{f} \simeq \epsilon_{b}$ or
- $0<\epsilon_{f}<\epsilon_{b} \ll\left|\lambda_{i}\right|$
- Suppression of near 0 eigenvalues if
- N 'small' eigenvalues $\left|\lambda_{i}\right| \simeq 0$; remaining eigenvalues 'large' $\left|\lambda_{i}\right|>\epsilon_{b}$; a low but non-zero weight
$0<\mathcal{W}=\mathcal{W}_{\text {small }} \mathcal{W}_{\text {large }}=\simeq\left(\frac{\epsilon_{f}}{\epsilon_{b}}\right)^{N} \prod_{\text {large }} \frac{\lambda_{i}^{2}+\epsilon_{f}^{2}}{\lambda_{i}^{2}+\epsilon_{b}^{2}} \simeq\left(\frac{\epsilon_{f}}{\epsilon_{b}}\right)^{N} \mathcal{W}_{\text {large }}$
- Elimination of near 0 eigenvalues if

■ $\epsilon_{f}=0$

Implementation in CPS (Columbia Physics spstem)

- Complication because CPS 'preconditions' Dirac operator into odd-even blocks

$$
D_{2 N \times 2 N}=\left(\begin{array}{cc}
m_{\epsilon} I_{o o} & W_{e o} \\
W_{o e} & m_{\epsilon} I_{e e}
\end{array}\right) \begin{gathered}
m_{\epsilon}=\kappa^{-1} \gamma_{5}(\theta) \\
\gamma_{5}(\theta)=\cos \theta+\imath \sin \theta \gamma_{5}
\end{gathered}
$$

and Dirac determinant becomes

$$
\operatorname{det}\left(D_{2 N \times 2 N}\right)=\operatorname{det}\left(M_{N \times N}\right)=\operatorname{det}\left[\kappa^{-2} I_{o o}-\gamma_{5}(-\theta) W_{e o} \gamma_{5}(-\theta) W_{o e}\right]
$$

- Determinant ratio was represented as symmetrized quotient (alg_quotient integrator)

$$
S=\phi^{\dagger} M_{b}\left(M_{f}^{\dagger} M_{f}\right)^{-1} M_{b}^{\dagger} \phi \quad \phi=M_{b}\left(M_{b}^{\dagger} M_{b}\right)^{-1} M_{f}^{\dagger} \eta \quad \chi=\left[\left(M_{f}^{\dagger} M_{f}\right)^{-1}\right] M_{f}^{\dagger} \eta
$$

- The quotient force (derivative of action w.r.t. MD time)

$$
\partial_{t} S=\chi^{\dagger} \partial_{t}\left[M_{f}^{\dagger} M_{f}\right] \chi+\phi^{\dagger} \partial_{t}\left[M_{b}\right] \chi+\chi^{\dagger} \partial_{t}\left[M_{b}^{\dagger}\right] \phi
$$

Implementation in CPS (continued)

- CPS is object structured; actions and lattices are objects
- Add subclass of the Wilson fermion action class
- pre/post multiply Dirac operator by $\gamma_{5}(\theta)$ (since $\gamma_{5}(\theta)$ does not commute with W)
- Provide forces in new subclass that take proper account of non-commutativity of $\gamma_{5}(\theta)$
- Modify quotient 'integrator’ class to be aware of new force type

Data - introduction

- Data without weighting factor ("old data")
- QCDOC; Columbia (M. Cheng)
$■ 16^{3} \times 8 \times 32 ; m_{0}=1.8 ; m_{l}=0.003 ; m_{s}=0.037$; Iwasaki action;

$$
\beta=1.95,2.00,2.0375,2.05,2.08,2.11,2.14
$$

- Data with weighting factor ("new data")
- 'New York Blue’; Brookhaven National Laboratory
${ }^{-} 16^{3} \times 8 \times 16,32 ; m_{0}=1.8 ; m_{l}=0.003 ; m_{s}=0.037$; Iwasaki action;
$\beta=1.95,2.00 ; \epsilon_{b}=0.10 ; \epsilon_{f}=0.01,0.25,0.05,0.075$
- Initial experimentation with weighting factor
- find optimum simulation parameters first

Data I - raw data

- Scaled $\bar{\Psi} \Psi$ plaquette, mres
- Lattice scale changing

- Expanded plaquette
- Gauge fields smoother at higher ϵ_{f}

Data I (continued)

Data II

- Question: how much of change in mres, $\bar{\Psi} \Psi$ is due to lattice scale change and how much due to specific effects of suppressing 0 eigenvalues
- Obtain qualitative indications by comparing mres at equal $\bar{\Psi} \Psi$ values or at equal plaquette values
- Assuming that $\bar{\Psi} \Psi$, plaquette reflect lattice scales to some degree
- Note different L_{S} values
- Scaled beta comparison

Data III - equal $\bar{\Psi} \Psi$ comparison

Data IV - equal plaquette comparison

- 'new' data at $L_{S}=24$ is better than 'old' data at $L_{S}=32$

Data V - scaled β comparison

- determine ‘effective’ beta for each ϵ_{f} using relation of plaquette and beta from old data
- interpolate mres \& $\bar{\Psi} \Psi$ to 'effective' beta using relations of mres \& $\bar{\Psi} \Psi$ and beta from old data
- scale for visibility
- admittedly ad hoc
- 'effective’ beta vs ϵ_{f}
- $\Delta \beta \sim 0.01 / 2.00$

Data VI (continued)

- observed mres vs. mres at 'effective' beta

- observed $\bar{\Psi} \Psi$ vs. $\bar{\Psi} \Psi a t$ 'effective' beta

Conclusions

- Implemented weighting factor with ratio of 'twisted' mass Wilson fermions
- Characterization on going
- current emphasis on finding optimum simulation parameters
- Achieved 2 fold reduction of mres (most recent data)
- Further improvements expected
- Future directions

$$
\left\{\frac{\operatorname{det}\left(H_{W}\left(-m_{0}\right) H_{W}^{\dagger}\left(-m_{0}\right)+\epsilon_{f}^{2}\right)}{\operatorname{det}\left(H_{W}\left(-m_{0}\right) H_{W}^{\dagger}\left(-m_{0}\right)+\epsilon_{b}^{2}\right)}\right\}^{\gamma}
$$

