Determination of Nucleon Excited States

Eric Engelson

University of Maryland

Lattice '08, July 15, 2008

- J. Bulava, C. Morningstar, Carnegie Mellon University
- R.G. Edwards, B. Joo, H.-W. Lin, D.G. Richards, Thomas Jefferson National Accelerator Facility
- E. Engelson, S.J. Wallace, University of Maryland
- G.T. Fleming, Yale University
- K.J. Juge, University of the Pacific
- A. Lichtl, Brookhaven National Laboratory
- N. Mathur, Tata Institute of Fundamental Research

Outline

- 1 Intro and Previous Studies
- 2 Calculation Method
- 3 G_{1g} Results
- 4 G_{1u} Analysis
- 5 Conlusions and Outlook

Introduction

- Lattice provides first principle calculations of spectrum
- Understand pattern of excited states, QCD
- Challenges: ordering of masses N' and N* (Roper)

Develop group theory, optimize operators, and refine analysis techniques.

 $12^3 \times 48$ lattice, $m_{\pi} = 700$ MeV

G_{2¢} G₁₁ н., G₂₁ Form a set of baryon operators {\$\bar{\mathcal{O}_1,\$\bar{\mathcal{O}_2,\$\dots,\$\bar{\mathcal{O}_n}\$}\$}
 Diagonalize matrix of correlators

$$C_{IJ}(t) = \sum_{\vec{x}} \langle 0 | T \mathcal{O}_I(\vec{x}, t) \bar{\mathcal{O}}_J(0, 0) | 0 \rangle$$
$$= \sum_n c_n e^{-E_n t}$$

- Principle correlator diagonalize correlator matrix on each time slice, $\lambda_n(t) \propto e^{-E_n t}$
- Fixed coefficient diagonalize at an early time slice, rotate each time slice into basis of eigenvectors. $C_{nn}(t) \propto e^{-E_n t}$

Group Theory

- Lattice breaks full rotational symmetry
- Construct operators that transform as irreducible representations of O^D_h: definite lattice spin and parity:

irreps	dim.
G_{1g}, G_{1u}	2
G_{2g}, G_{2u}	2
H_g, H_u	4

Identify continuum spin via patterns of degenerate states in irreps:

J	irreps
1/2	G ₁
3/2	Н
5/2	H,G_2
7/2	G_1, G_2, H
9/2	G ₁ , H(×2)

Operators

Lichtl, hep-lat/0609019

Gauge invariant displacements: capture radial and orbital structure of baryons:

Operator type	Displacement indices
Single-Site	i = j = k = 0
Singly-Displaced	$i=j=0, k\neq 0$
●─● Doubly-Displaced-I	$i=0, j=-k, k\neq 0$
Doubly-Displaced-L	$i=0, j \neq k , jk\neq 0$
Triply-Displaced-T	$i=-j, j \neq k , jk\neq 0$

 Pruning: Choose 16 operators in each channel for use with the variational method: low noise, linear independence
 Smearing: Enhances coupling to low lying states -

Gaussian quark smearing with stout smeared links.

- Anisotropic lattices finer temporal spacing for better measurement of excited states
- 860 configurations: $24^3 \times 64 N_f = 2$ Wilson with $m_{\pi} = 360$ MeV, $a_s = 0.13$ fm, $a_s/a_t = 3$,
- Ratio of spatial and temporal Wilson loops to measure gauge anisotropy, relativistic energy dispersion relation to measure fermion anisotropy

r₀ to set scale

G_{1u} Channel

- Baryon creation operators of parity P create backward propagating baryons of parity -P
- Short temporal dimension: interference between forward and backward states
- G_{1u} channel: backward propagating G_{1g} ground state has a lower energy

G_{1u} Channel

G_{1u} ground state effective mass:

Filtering

Filter out the backwards propagating state prior to diagonalization

$$C(t) = \sum_{n} c_n e^{-E_n t} + b e^{-E'_0(T-t)}$$

$$E_{0}'\int_{t}^{t_{1}} dt' C(t') = \sum_{n} \frac{E_{0}'}{E_{n}} c_{n} \left(e^{-E_{n}t} - e^{-E_{n}t_{1}} \right) - b \left(e^{-E_{0}'(T-t)} + e^{-E_{0}'(T-t_{1})} \right)$$

$$\begin{aligned} f_{filt}(t,t_1) &= C(t) - C(t_1) + (1 - e^{-E'_0}) \sum_{j=t+1}^{t_1} C(j) \\ &= \sum_n c_n \left[1 + \frac{1 - e^{-E'_0}}{e^{E_n} - 1} \right] \left(e^{-E_n t} - e^{-E_n t_1} \right) \\ &= \sum_n C'_n \left(e^{-E_n t} - e^{-E_n t_1} \right) \end{aligned}$$

Filtering

Filter out the backwards propagating state prior to diagonalization

$$C(t) = \sum_n c_n e^{-E_n t} + b e^{-E'_0(T-t)}$$

$$E_{0}'\int_{t}^{t_{1}}dt'C(t') = \sum_{n}\frac{E_{0}'}{E_{n}}c_{n}\left(e^{-E_{n}t} - e^{-E_{n}t_{1}}\right) - b\left(e^{-E_{0}'(T-t)} + e^{-E_{0}'(T-t_{1})}\right)$$

$$C_{filt}(t, t_1) = C(t) - C(t_1) + (1 - e^{-E'_0}) \sum_{j=t+1}^{t_1} C(j)$$

= $\sum_n c_n \left[1 + \frac{1 - e^{-E'_0}}{e^{E_n} - 1} \right] (e^{-E_n t} - e^{-E_n t_1})$
= $\sum_n c'_n (e^{-E_n t} - e^{-E_n t_1})$

The filtered correlators look like:

$$\sum_{n} c'_{n} e^{-E_{n}t} + K$$

Diagonalize

Fit to $Ae^{-Et} + K$

Compute the effective mass:

$$M_{eff} = \log\left(rac{C(t) - K}{C(t+1) - K}
ight)$$

Does the filter matter?

Does filtering change the diagonalization? Look at the overlap between filtered and unfiltered eigenvectors

Does the filter matter?

Does filtering change the diagonalization? Look at the overlap between filtered and unfiltered eigenvectors

Does the filter matter?

Does filtering change the diagonalization? Look at the overlap between filtered and unfiltered eigenvectors

Filtering may be needed for higher excited states.

$N_f = 2$ Nucleon Spectrum

- Analyze G₂ and H irreps with the filter
- Refine fitting and filtering evaluate systematics
- Other lattices different volumes and pion masses

Before the filter:

$$e^{-Ht} + e^{-\bar{H}(T-t)}$$

After the filter:

$$e^{-Ht} + Ce^{-Ht_1}$$

Eigenvalues:

$$e^{-Et} + Ce^{-Et_1}$$