

Collaborators:

K. JansenM. P. LombardoM. Müller-PreusskerM. PetschliesO. PhilipsenL. Zeidlewicz

DESY/Zeuthen, Germany INFN Frascati, Italy Humboldt-Universität Berlin, Germany Humboldt-Universität Berlin, Germany Universität Münster, Germany Universität Münster, Germany

Lattice 2008, Williamsburg, VA, July 14 - 19, 2008

Outline of the talk

- 1. Introduction and motivation
- 2. Anticipating the phase structure
- 3. Evidence for the Aoki phase
- 4. Closer look at the first order region
- 5. Search for Creutz' cone scenario
- 6. Summary and outlook

Some of our twisted-mass papers

- Twisted mass QCD at finite temperature, E.-M. I., M. Müller-Preussker, M. Petschlies, K. Jansen, M. P. Lombardo, O. Philipsen, L. Zeidlewicz, A. Sternbeck, PoS LATTICE2007:238 (2007) [arXiv:0710.0569 [hep-lat]]
- Probing the Aoki phase with $N_f = 2$ Wilson fermions at finite temperature, E.-M. I., W. Kerler, M. Müller-Preussker, A. Sternbeck, H. Stüben, [hep-lat/0511059]
- A numerical reinvestigation of the Aoki phase with N_f = 2 Wilson fermions at zero temperature, E.-M. I., W. Kerler, M. Müller-Preussker, A. Sternbeck, H. Stüben, Phys. Rev. D69:074511 (2004) [hep-lat/0309057]

1. Introduction and Motivation

- Lattice field theory exists in different discretizations
- General aim: optimization of the continuum and chiral limit
- Wilson fermions
 - + locality realized
 - + clear flavor assignment
 - + competitive algorithms developed
 - chiral symmetry explicitely broken
 - subtle chiral behavior
 - complicated phase structure at T = 0 and finite T
 - slow approach to continuum
 - + the latter can be cured

The goal of the tmfT Collaboration : taking advantage of twisted mass for QCD thermodynamics

One among three roads to improve the Wilson fermion action :

- 1. O(a) improvement by clover term
- 2. chiral improvement by smearing
- 3. twisted mass improvement

What makes twisted mass attractive ?

- Prevents the occurrence of small eigenvalues of the Dirac operator
- This avoids "exceptional configurations".
- This allows to work at smaller quark masses.
- At maximal twist (with κ tuned to criticality) automatic O(a) improvement is guaranteed.

Price: 3-dimensional phase diagram with complicated structure due to $O(a^2)$ parity and flavor violating effects

The gauge action :

$$S_G = \beta \sum_x \left[c_0 \sum_{\mu < \nu} \left(1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{x\mu\nu}^{1 \times 1} \right) + c_1 \sum_{\mu \neq \nu} \left(1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{x\mu\nu}^{1 \times 2} \right) \right]$$

tree-level Symanzik action with $\beta = 6/g_0^2$, $c_1 = -1/12$ and $c_0 = 1 - 8 c_1$ In our previous Aoki phase studies : Wilson gauge action ($c_1 = 0$) The formion action :

The fermion action :

$$S_F = a^4 \sum_x \left\{ \overline{\psi}(x) \left[\left(D[U] + m_0 \right) \mathbb{I}_{2 \times 2} + i \ \mu \ \tau_3 \ \gamma_5 \right] \ \psi(x) \right\}$$
$$D[U] = \frac{1}{2} \left[\gamma_\mu \left(\nabla_\mu + \nabla^*_\mu \right) - a \ \nabla^*_\mu \ \nabla_\mu \right]$$

Wilson-Dirac fermion action with twisted-mass term for $N_f = 2$ light flavors (in the physical basis $\Psi = (u, d)$)

[Frezzotti, Grassi, Sint, Weisz 2001; Frezzotti, Rossi 2004] Twisted mass - an irrelevant rotation in continuum, not on lattice Phase diagram spanned by

- inverse gauge coupling $\beta = 1/g_0^2$
- bare quark mass m_0 , resp. hopping parameter $\kappa = \frac{1}{8+2 \ a \ m_0}$
- twisted-mass μ , resp. polar mass $m_q = \sqrt{\left(\frac{1}{2\kappa} \frac{1}{2\kappa_c}\right)^2 + \mu^2}$

First example of an "unphysical" phase "pocket"

• $h = 2 \kappa \mu$ – an external "magnetic field" \Rightarrow induces spontaneous breaking of combined flavor-parity symmetry [Aoki 1984,1987] in some κ interval

 \Rightarrow order parameter = $\langle \overline{\psi} i \gamma_5 \tau_3 \psi \rangle \neq 0$

• no phase transition at $h \neq 0$ (cf. Ising model at $H \neq 0$)

2. Anticipating the phase structure

Aoki phase put into the full β - κ phase diagram

Aoki's conjecture [1984]: the Aoki phase

(B) in the β - κ plane

Connecting strong and weak coupling [Creutz, 2007]

What follows after the Aoki phase before the confinement – deconfinement transition can be studied ?

Chiral effective action proposes the landscape of the phase diagram embedded in the β - κ - μ diagram. (Sharpe, Singleton, Creutz)

viewed in the κ - μ plane, going from low β to higher β

deconfinement in a disk around the $\kappa_c(\beta)$ line

A closer study of the transition region towards higher β

The β - κ diagram for $16^3 \times N_t$ lattices with $N_t = 4, 6$ (here for Iwasaki gauge action and clover-improved Wilson fermion action [CP-PACS, 2001]) does not sufficiently resolve the "unphysical" phase structure.

The map of our simulation points on the $16^3 \times 8$ lattice, projected onto the β - κ plane from $0 \le \mu < 0.007$, sketches the different transition lines (surfaces) under discussion. No transition has been found at $\beta > 4.5$.

We explore the phase structure using standard lattice variables :

- average plaquette \Rightarrow indicator for bulk transitions
- average Polyakov loop \Rightarrow thermal transition line
- chiral condensate : $\langle \overline{\psi}\psi
 angle$ interior of the "confinement" phase
- "pion norm" : $\sum_x \langle \overline{\psi} \psi(x) \ \overline{\psi} \psi(0) \rangle \Rightarrow$ detects the chiral transition
- number N_{CG} of conjugate gradient iterations needed to invert the twisted-mass Wilson-Dirac operator \Rightarrow sensitive to small eigenvalues, detects the chiral limit

- parity-flavor breaking order parameter $\langle \overline{\psi} i \gamma_5 \tau_3 \psi \rangle \rightarrow \neq 0$ in the double-limit $\lim_{h\to 0} \lim_{V\to\infty}$, exists only in the Aoki phase !

All simulations performed for $N_s^3 \times N_t = 16^3 \times 8$ Generalized HMC algorithm with even/odd preconditioning and Hasenbusch trick, in the multiple time-scale integration scheme.

3. Evidence for the Aoki phase

Studied anew for the tree-level Symanzik improved gauge action :

Order parameter for $\beta = 3.0$

Fisher plots for various κ

Fisher plots for various κ

vs. $h \rightarrow 0$ for various κ

at $\beta = 3.0$

at $\beta = 3.4$

Conclusions concerning the Aoki phase

- $\beta = 3.0$: Aoki phase confirmed (Fisher plots are crucial !) for the new action (only for the available lattice size).
- β = 3.4 : Only a "shadow" of the Aoki phase remains.
 The order parameter vanishes for h → 0.
 Instead, first indications are found for metastability.

4. Closer look at the first order region

First look at the lower branch transition (low κ , metastability) as described by the effective action (also for T = 0)

This is not a thermal transition: the Polyakov loop jumps down with increasing κ !

Next look at the upper branch transition (larger κ , also metastable). Histograms of the real part of the Polyakov loop:

 $\kappa = 0.22$

 $\kappa = 0.24$

This is a thermal transition. The Polyakov loop jumps up with increasing κ ! The histogram at $\kappa = 0.22$ is supplemented with hot and cold starts on a 32^4 lattice.

Conclusions concerning the first order region

We observe two branches :

A lower transition surface (finite in μ) of a first order transition and (so far seen at $\mu = 0$) an upper branch of the transition which is thermal.

- Metastable states are observed at $\beta = 3.4$ and $\beta = 3.45$ in the region $\kappa = 0.18...0.184$ at small μ as predicted by the effective action (a remnant of the T = 0 transition).
- The upper branch is a thermal transition at $\kappa > \kappa_c(\beta)$. As an example, for $\beta = 3.6$, a first-order transition at $\kappa \approx 0.22$ has been shown (originating from the first doubler branch).

5. Search for Creutz' cone scenario

While the transitions come closer, the lower branch - before it ends - is enclosed by a cone around the $\kappa_c(\beta)$ line, that is opening towards large β .

Most useful so far : κ scan at $\mu \neq 0$ for several β values $\beta = 3.75$, 3.775 and 3.8

Example : a rough scan at $\beta = 3.75$ and $\mu = 0.005$

The real part of the Polyakov loop

The susceptibility of the Polyakov loop

The lower peak (left) actually splits into two !

Zooming in the lower transition region for $\beta = 3.75$, 3.775 and 3.8

- The Polyakov loop susceptibility resolves two transitions.
- The Polyakov loop rises from both sides.
- The pion norm (and the plaquette susceptibility) have peaks at the lower (in κ) of the two transitions.
- The higher β , the more convincing becomes the two-transition picture.
- The transition bends down in κ with increasing β .
- The tip of the cone seems to be at $\beta \lesssim 3.75$
- At higher β , the bottom of the cone probably connects to the transition line coming from the β -axis ($\kappa = 0$, $m_q = \infty$, quenched limit).
- The upper deconfining transition, at $\kappa \approx 0.2$, is deconfining from below and related to the physics of the doubler.

A cut through the cone close to the tip: The schematic (ellipsoidal) transition line (red) centered at $\kappa_c(\beta, \mu = 0, T = 0)$ is compared with the prediction of χPT (green) with the two κ 's located by actual simulations at $\beta = 3.75$ and $\mu = 0.005$.

6. Summary and outlook

In summary, our perspective view :

- The phase structure at $T \neq 0$ in the β - κ - μ phase space, for the preferred tree-level Symanzik gauge / twisted-mass Wilson fermion system and closer to the continuum (now with $N_t = 8$), has become clearer.
- We explored the vicinity of the β - κ plane at $0 \le \mu < 0.007$.
- Now, for larger N_t , the different regimes are better separated from each other. The tip of the Aoki phase and the following first order surface are well localized.
- Higher in β , the $\kappa_c(\beta, \mu = 0, T = 0)$ line becomes the center of a cone-like surface enclosing the deconfined phase.
- The tip of the cone is at $\beta \lesssim 3.75$. The "transition circle" is partially seen.
- In the region of the opening cone more simulational work must be invested.
- Our final aim : determination of T_c and the equation of state close to the chiral limit, taking advantage of the automatic O(a) improvement for twisted-mass fermions.