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1. Introduction and Motivation

• Lattice field theory exists in different discretizations

• General aim: optimization of the continuum and chiral limit

• Wilson fermions

+ locality realized

+ clear flavor assignment

+ competitive algorithms developed

– chiral symmetry explicitely broken

– subtle chiral behavior

– complicated phase structure at T = 0 and finite T

– slow approach to continuum

+ the latter can be cured

The goal of the tmfT Collaboration : taking advantage

of twisted mass for QCD thermodynamics



One among three roads to improve the Wilson fermion action :

1. O(a) improvement by clover term

2. chiral improvement by smearing

3. twisted mass improvement

What makes twisted mass attractive ?

• Prevents the occurrence of small eigenvalues

of the Dirac operator

• This avoids “exceptional configurations”.

• This allows to work at smaller quark masses.

• At maximal twist (with κ tuned to criticality)

automatic O(a) improvement is guaranteed.

Price: 3-dimensional phase diagram with complicated structure

due to O(a2) parity and flavor violating effects



The gauge action :

SG = β
∑
x

c0 ∑
µ<ν

(
1−

1

3
Re Tr U1×1

xµν

)
+ c1

∑
µ 6=ν

(
1−

1

3
Re Tr U1×2

xµν

)
tree-level Symanzik action with β = 6/g20, c1 = −1/12 and

c0 = 1− 8 c1

In our previous Aoki phase studies : Wilson gauge action (c1 = 0)

The fermion action :

SF = a4
∑
x

{
ψ(x)

[(
D[U ] +m0

)
I2×2 + i µ τ3 γ5

]
ψ(x)

}

D[U ] =
1

2

[
γµ

(
∇µ +∇∗µ

)
− a ∇∗µ ∇µ

]
Wilson-Dirac fermion action with twisted-mass term for Nf = 2

light flavors (in the physical basis Ψ = (u, d))

[Frezzotti, Grassi, Sint, Weisz 2001; Frezzotti, Rossi 2004]

Twisted mass - an irrelevant rotation in continuum, not on lattice



Phase diagram spanned by

• inverse gauge coupling β = 1/g2
0

• bare quark mass m0, resp. hopping parameter κ = 1
8+2 a m0

• twisted-mass µ, resp. polar mass mq =

√(
1
2κ
− 1

2κc

)2
+ µ2

First example of an “unphysical” phase “pocket”

• h = 2 κ µ – an external “magnetic field” ⇒ induces

spontaneous breaking of combined flavor-parity symmetry

[Aoki 1984,1987] in some κ interval

⇒ order parameter = 〈ψ i γ5 τ3 ψ〉 6= 0

• no phase transition at h 6= 0 (cf. Ising model at H 6= 0)



2. Anticipating the phase structure

Aoki phase put into the full β-κ phase diagram
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Connecting strong and weak coupling

[Creutz, 2007]

What follows after the Aoki phase before the confinement –

deconfinement transition can be studied ?



Chiral effective action proposes the landscape of the phase

diagram embedded in the β-κ-µ diagram.

(Sharpe, Singleton, Creutz)

viewed in the κ-µ plane, going from low β to higher β
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A closer study of the transition region towards higher β
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The β-κ diagram for 163 ×Nt lattices with

Nt = 4,6 (here for Iwasaki gauge action and

clover-improved Wilson fermion action [CP-

PACS, 2001]) does not sufficiently resolve

the “unphysical” phase structure.

The map of our simulation points on the

163×8 lattice, projected onto the β-κ plane

from 0 ≤ µ < 0.007, sketches the different

transition lines (surfaces) under discussion.

No transition has been found at β > 4.5 .



We explore the phase structure using standard lattice

variables :

– average plaquette ⇒ indicator for bulk transitions

– average Polyakov loop ⇒ thermal transition line

– chiral condensate : 〈ψψ〉 interior of the “confinement” phase

– “pion norm” :
∑

x〈ψψ(x) ψψ(0)〉 ⇒ detects the chiral transition

– number NCG of conjugate gradient iterations needed to invert

the twisted-mass Wilson-Dirac operator ⇒ sensitive to small

eigenvalues, detects the chiral limit

– parity-flavor breaking order parameter 〈ψ i γ5 τ3 ψ〉 →6= 0 in

the double-limit limh→0 limV→∞, exists only in the Aoki phase !

All simulations performed for N3
s ×Nt = 163 × 8

Generalized HMC algorithm with even/odd preconditioning and

Hasenbusch trick, in the multiple time-scale integration scheme.



3. Evidence for the Aoki phase

Studied anew for the tree-level Symanzik improved gauge action :
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Conclusions concerning the Aoki phase

• β = 3.0 : Aoki phase confirmed (Fisher plots are crucial !)

for the new action (only for the available lattice size).

• β = 3.4 : Only a “shadow” of the Aoki phase remains.

The order parameter vanishes for h→ 0.

Instead, first indications are found for metastability.



4. Closer look at the first order region

First look at the lower branch transition (low κ, metastability)

as described by the effective action (also for T = 0)
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This is not a thermal transition: the Polyakov loop jumps down with increasing κ !



Next look at the upper branch transition (larger κ, also

metastable). Histograms of the real part of the Polyakov loop:
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This is a thermal transition. The Polyakov loop jumps up with increasing κ !

The histogram at κ = 0.22 is supplemented with hot and cold starts on a 324 lattice.



Conclusions concerning the first order region

We observe two branches :

A lower transition surface (finite in µ) of a first order transition

and (so far seen at µ = 0) an upper branch of the transition

which is thermal.

• Metastable states are observed at β = 3.4 and β = 3.45 in the

region κ = 0.18...0.184 at small µ as predicted by the effective

action (a remnant of the T = 0 transition).

• The upper branch is a thermal transition at κ > κc(β). As an

example, for β = 3.6, a first-order transition at κ ≈ 0.22 has

been shown (originating from the first doubler branch).



5. Search for Creutz’ cone scenario

While the transitions come closer, the lower branch

- before it ends - is enclosed by a cone around the κc(β) line,

that is opening towards large β.

Most useful so far : κ scan at µ 6= 0 for several β values

β = 3.75, 3.775 and 3.8

Example : a rough scan at β = 3.75 and µ = 0.005
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Zooming in the lower transition region
for β = 3.75, 3.775 and 3.8
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• The Polyakov loop susceptibility resolves two transitions.

• The Polyakov loop rises from both sides.

• The pion norm (and the plaquette susceptibility) have

peaks at the lower (in κ) of the two transitions.

• The higher β, the more convincing becomes the

two-transition picture.

• The transition bends down in κ with increasing β.

• The tip of the cone seems to be at β . 3.75

• At higher β, the bottom of the cone probably connects to

the transition line coming from the β-axis (κ = 0, mq =∞,

quenched limit).

• The upper deconfining transition, at κ ≈ 0.2, is deconfining

from below and related to the physics of the doubler.
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6. Summary and outlook

In summary, our perspective view :
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• The phase structure at T 6= 0 in the β-κ-µ phase space,

for the preferred tree-level Symanzik gauge / twisted-mass

Wilson fermion system and closer to the continuum

(now with Nt = 8), has become clearer.

• We explored the vicinity of the β-κ plane at 0 ≤ µ < 0.007.

• Now, for larger Nt, the different regimes are better separated

from each other. The tip of the Aoki phase and the following

first order surface are well localized.

• Higher in β, the κc(β, µ = 0, T = 0) line becomes the center

of a cone-like surface enclosing the deconfined phase.

• The tip of the cone is at β . 3.75. The “transition circle” is

partially seen.

• In the region of the opening cone more simulational work

must be invested.

• Our final aim : determination of Tc and the equation of state

close to the chiral limit, taking advantage of the automatic

O(a) improvement for twisted-mass fermions.


