Dual quark condensate and dressed Polyakov loops

Falk Bruckmann (Univ. of Regensburg)

Lattice 2008, William and Mary

with Erek Bilgici, Christian Hagen and Christof Gattringer

Phys. Rev. D77 (2008) 094007, 0801.4051 [hep-lat], Phys. Lett. B647 (2007) 56-61, hep-lat/0612020

Motivation

QCD at finite temperature: confinement and chiral symmetry breaking quenched \sim Yang-Mills theory: same T_c

• Polyakov loop: $\mathcal{P}(\vec{x}) = \mathcal{P} \exp \left(i \int_0^\beta dx_0 A_0(x_0, \vec{x}) \right), \quad \beta = 1/k_B T$

• order parameter for confinement: related to the free energy of a single quark confined phase: $\langle tr_c \mathcal{P} \rangle = 0$ $(F_{quark} \to \infty)$

• spectral density $\rho(\lambda)$ of the Dirac operator (in background A_{μ}):

• order parameter of chiral symmetry: $ho(0) \sim \langle \bar{\psi}\psi \rangle \dots$ chiral condensate

Banks-Casher

• spectral density $\rho(\lambda)$ of the Dirac operator (in background A_{μ}):

• order parameter of chiral symmetry: $ho(0) \sim \langle \bar{\psi}\psi \rangle \dots$ chiral condensate

Banks-Casher

Is there an underlying mechanism connecting the two? does confinement leave a trace in the Dirac spectrum? quarks should know that they are confined!

 \Rightarrow dressed Polyakov loops as a new order parameter

work on the lattice (regulator)

• Polyakov loop: $\mathcal{P}(x)\equiv\prod_{ au=1}^{N_0}U_0(x_0+ au,ec{x})$

work on the lattice (regulator)

- Polyakov loop: $\mathcal{P}(x) \equiv \prod_{\tau=1}^{N_0} U_0(x_0 + \tau, \vec{x})$
- Dirac operator, here staggered

Kogut, Susskind

$$D(x,y) \equiv rac{1}{2a} \sum_{\mu} \eta_{\mu}(x) [U_{\mu}(x)\delta_{x+\hat{\mu},y} - h.c.]$$
 hopping by one link

 $\Rightarrow D'(x, x) \ni$ products of links along closed loops of length *I*, at *x*

work on the lattice (regulator)

- Polyakov loop: $\mathcal{P}(x) \equiv \prod_{\tau=1}^{N_0} U_0(x_0 + \tau, \vec{x})$
- Dirac operator, here staggered

Kogut, Susskind

 $D(x, y) \equiv \frac{1}{2a} \sum_{\mu} \eta_{\mu}(x) \left[U_{\mu}(x) \delta_{x+\hat{\mu}, y} - h.c. \right]$ hopping by one link

 $\Rightarrow D'(x, x) \ni$ products of links along closed loops of length *I*, at *x*

how to distinguish Polyakov loops from 'trivially closed' loops?

work on the lattice (regulator)

- Polyakov loop: $\mathcal{P}(x) \equiv \prod_{\tau=1}^{N_0} U_0(x_0 + \tau, \vec{x})$
- Dirac operator, here staggered

Kogut, Susskind

 $D(x, y) \equiv \frac{1}{2a} \sum_{\mu} \eta_{\mu}(x) \left[U_{\mu}(x) \delta_{x+\hat{\mu}, y} - h.c. \right]$ hopping by one link

 $\Rightarrow D^{\prime}(x,x) \ni$ products of links along closed loops of length *I*, at *x*

how to distinguish Polyakov loops from 'trivially closed' loops?

• phase 'twisted' boundary conditions, as a tool: Gattringer '06

 $\psi(\mathbf{x}_0 + \beta, \mathbf{x}) = \mathbf{z} \, \psi(\mathbf{x}_0, \mathbf{x}), \qquad \mathbf{z} = e^{i\phi} \quad \text{imag. chem. potential}$

realized by $U_0 \rightarrow z U_0$ at some time slice

 \Rightarrow Polyakov loops: $\mathcal{P} \rightarrow \mathbf{Z}\mathcal{P}$, trivial loops stay the same

- \mathcal{P} itself turned out to be not suitable (UV dominated) FB et al. '06
- propagator:

cf. Synatschke, Wipf, Wozar '07

tr
$$\frac{1}{m+D_{\phi}} = \frac{1}{m} \sum_{l=0}^{\infty} \frac{(-1)^l}{m^l} \operatorname{tr}(D_{\phi})^l \quad \dots$$
 all powers of D_{ϕ}

- \mathcal{P} itself turned out to be not suitable (UV dominated) FB et al. '06
- propagator:

cf. Synatschke, Wipf, Wozar '07

$$\operatorname{tr} \frac{1}{m + D_{\phi}} = \frac{1}{m} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{m^{l}} \operatorname{tr}(D_{\phi})^{l} \qquad \dots \text{ all powers of } D_{\phi}$$
$$= \frac{1}{m} \sum_{\substack{loops \\ of length l}} \frac{(\pm 1)}{(2am)^{l}} \operatorname{tr}_{c} \prod_{\substack{loop \\ loop}} U_{\mu}(x) e^{i\phi q(loop)}$$

 $q(\mathsf{loop}) \in \mathbb{Z}$: how many times the loop winds around $[0, \beta]$

- \mathcal{P} itself turned out to be not suitable (UV dominated) FB et al. '06
- propagator:

cf. Synatschke, Wipf, Wozar '07

$$\operatorname{tr} \frac{1}{m + D_{\phi}} = \frac{1}{m} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{m^{l}} \operatorname{tr}(D_{\phi})^{l} \dots \text{ all powers of } D_{\phi}$$
$$= \frac{1}{m} \sum_{\substack{\text{loops} \\ \text{of length } l}} \frac{(\pm 1)}{(2am)^{l}} \operatorname{tr}_{c} \prod_{\substack{\text{loop} \\ \text{loop}}} U_{\mu}(x) e^{i\phi q(\text{loop})}$$

 $q(\mathsf{loop}) \in \mathbb{Z}$: how many times the loop winds around $[0, \beta]$

• project onto particular winding *q*:

$$\frac{1}{2\pi}\int_0^{2\pi} d\phi\, e^{-i\phi q}$$

let's specify to a single winding q = 1 like the Polyakov loop:

A new observable

FB et al. '08

$$\begin{split} \tilde{\Sigma}_{1} \equiv \int_{0}^{2\pi} \frac{d\phi}{2\pi} \, e^{-i\phi} \frac{1}{V} \Big\langle \text{tr} \frac{1}{m+D_{\phi}} \Big\rangle = \frac{1}{mV} \sum_{\text{loops}} \frac{(\pm 1)}{(2am)^{I}} \Big\langle \text{tr}_{c} \prod_{I} U_{\mu}(x) \Big\rangle \\ \text{of length } I, \text{ winding once} \end{split}$$

dual condensate

dressed Polyakov loops

A new observable

FB et al. '08

$$\begin{split} \tilde{\Sigma}_{1} \equiv \int_{0}^{2\pi} \frac{d\phi}{2\pi} \, e^{-i\phi} \frac{1}{V} \Big\langle \text{tr} \frac{1}{m+D_{\phi}} \Big\rangle = \frac{1}{mV} \sum_{\text{loops}} \frac{(\pm 1)}{(2am)^{I}} \left\langle \text{tr}_{c} \prod_{I} U_{\mu}(x) \right\rangle \\ \text{of length } I, \text{ winding once} \end{split}$$

dual condensate

dressed Polyakov loops

massless limit:

$$\lim_{m\to 0}\lim_{V\to\infty}\tilde{\Sigma}_1=\int_0^{2\pi}\frac{d\phi}{2\pi}\,e^{-i\phi}\rho(0)_\phi$$

dual chiral condensate $ho(0) \sim \langle \bar{\psi}\psi \rangle$ (integrated over phase bc.s)

massive limit:

$$\lim_{m\to\infty}\tilde{\Sigma}_1\sim \langle \text{tr}_{\boldsymbol{c}}\mathcal{P}\rangle$$

thin Polyakov loop (shortest) detours suppressed by 2*am*

$\tilde{\Sigma}_1$ is an order parameter

numerical results (quenched):

 $\tilde{\Sigma}_1$ as a function of temperature for m = 100 MeV

Spectral representation

$$ilde{\Sigma}_1 \equiv \int_0^{2\pi} rac{d\phi}{2\pi} \, e^{-i\phi} rac{1}{V} \Big\langle \mathrm{tr} rac{1}{m+D_\phi} \Big
angle = \int_0^{2\pi} rac{d\phi}{2\pi} \, e^{-i\phi} rac{1}{V} \Big\langle \sum_i rac{1}{m+\lambda_\phi^{(i)}} \Big
angle$$

truncate the sum: IR dominance expected since λ in denominator! confirmed by lattice data (if *m* not too large):

how is a vanishing/finite Polyakov loop built up by the eigenvalues?

respond differently to bc.s in confined and deconfined phase

nonvanishing cos ϕ -part only in the deconfined phase $\Rightarrow \tilde{\Sigma}_1 \neq 0$ non-real \mathcal{P} : the plot is shifted by $\pm 2\pi/3$ \Rightarrow periodicity $2\pi/3$, known from imag. μ Lombardo et al.

How about the chiral condensate?

remember:

$$ilde{\Sigma}_{1} \stackrel{m o 0, V o \infty}{\longrightarrow} \int_{0}^{2\pi} d\phi \ e^{-i\phi}
ho(0)_{\phi} = \int_{0}^{2\pi} d\phi \ e^{-i\phi} \langle ar{\psi} \psi
angle_{\phi}$$

• confined phase:

 $\langle \bar{\psi}\psi
angle
eq 0$, but independent of $\phi \Rightarrow$ vanishing $\tilde{\Sigma}_1$

How about the chiral condensate?

remember:

$$ilde{\Sigma}_{1} \stackrel{m o 0, V o \infty}{\longrightarrow} \int_{0}^{2\pi} d\phi \ e^{-i\phi}
ho(0)_{\phi} = \int_{0}^{2\pi} d\phi \ e^{-i\phi} \langle ar{\psi} \psi \rangle_{\phi}$$

onfined phase:

 $\langle \bar{\psi}\psi
angle
eq 0$, but independent of $\phi \quad \Rightarrow \quad$ vanishing $\tilde{\Sigma}_1$

deconfined phase:

 $\langle ar{\psi}\psi
angle = 0$, spectral gap: ho(0) = 0 !?

How about the chiral condensate?

remember:

$$ilde{\Sigma}_{1} \stackrel{m o 0, V o \infty}{\longrightarrow} \int_{0}^{2\pi} d\phi \ e^{-i\phi}
ho(0)_{\phi} = \int_{0}^{2\pi} d\phi \ e^{-i\phi} \langle ar{\psi} \psi \rangle_{\phi}$$

onfined phase:

 $\langle \bar{\psi}\psi
angle
eq 0$, but independent of $\phi \Rightarrow$ vanishing $\tilde{\Sigma}_1$

deconfined phase:

 $\langle \bar{\psi}\psi \rangle = 0$, spectral gap: $\rho(0) = 0$!? no: $\rho(0)_{\text{periodic}} \neq 0$ for real \mathcal{P} always one bc. where $\rho(0) \neq 0$

Gattringer, Schaefer '03

$$\langle \bar{\psi}\psi \rangle_{\phi} \sim \delta(\phi + \phi_{\mathcal{P}}) \Rightarrow \text{nonvanishing } \tilde{\Sigma}_{1}$$

for all $T > T_{c}$

Center symmetry

the deconfinement transition of pure gauge theory can be described as spontaneous breaking of the center symmetry:

the action is invariant under

 $U_0 \rightarrow z U_0$ at some time slice, $z \in \text{center}(SU(3))$

• the Polyakov loop changes as

 $\mathrm{tr}_{c}\mathcal{P} \to z \,\mathrm{tr}_{c}\mathcal{P}$

Center symmetry

the deconfinement transition of pure gauge theory can be described as spontaneous breaking of the center symmetry:

the action is invariant under

 $U_0 \rightarrow z U_0$ at some time slice, $z \in \text{center}(SU(3))$

• the Polyakov loop changes as

$$\mathrm{tr}_{c}\mathcal{P} \to z \,\mathrm{tr}_{c}\mathcal{P}$$

• same for the dressed Polyakov loops $\tilde{\Sigma}_1$ as they wind once as well \Rightarrow therefore order parameter for confinement

Center symmetry

the deconfinement transition of pure gauge theory can be described as spontaneous breaking of the center symmetry:

the action is invariant under

 $U_0 \rightarrow z U_0$ at some time slice, $z \in \text{center}(SU(3))$

• the Polyakov loop changes as

$$\operatorname{tr}_{c}\mathcal{P} \to \operatorname{z}\operatorname{tr}_{c}\mathcal{P}$$

- same for the dressed Polyakov loops $\tilde{\Sigma}_1$ as they wind once as well \Rightarrow therefore order parameter for confinement
- all functions of the form

Synatschke, Wipf, Langfeld '08

$$\int_0^{2\pi} \frac{d\phi}{2\pi} \, e^{-i\phi} f(D_\phi)$$

transform this way, thus are order parameters for center symm.

Generalisation: Locally resolved Polyakov loops

so far: $\sum_{x} \mathcal{P}(x) \rightarrow$ eigenvalues $\lambda_{\phi}^{(i)}$

now: $\mathcal{P}(\mathbf{x}) \rightarrow$ eigenvalues $\lambda_{\phi}^{(i)}$ and eigenvectors $\psi_{\phi}^{(i)}$

Generalisation: Locally resolved Polyakov loops

so far: $\sum_{x} \mathcal{P}(x) \rightarrow$ eigenvalues $\lambda_{\phi}^{(i)}$

now: $\mathcal{P}(\mathbf{x}) \rightarrow$ eigenvalues $\lambda_{\phi}^{(i)}$ and eigenvectors $\psi_{\phi}^{(i)}$

• static quark potential $V_{q\bar{q}}(|\vec{x} - \vec{y}|) \sim \ln\langle \operatorname{tr} \mathcal{P}(\vec{x}) \operatorname{tr} \mathcal{P}(\vec{y}) \rangle$ SU(2): Synatschke, Wipf, Langfeld '08

 \Rightarrow string tension preserved by a truncated mode sum mechanism not fully clear $${}_{\rm Bilgin}$$

Bilgici, Gattringer '08

Summary

the response of Dirac spectra to different temporal bc.s contains information about confinement

the dressed Polyakov loop $\tilde{\Sigma}_1$ is a novel deconfinement order param. that relates the dual chiral condensate to the thin Polyakov loop

... and is dominated by IR modes

many center sensitive functions of D can be defined

Summary

the response of Dirac spectra to different temporal bc.s contains information about confinement

the dressed Polyakov loop $\tilde{\Sigma}_1$ is a novel deconfinement order param. that relates the dual chiral condensate to the thin Polyakov loop

... and is dominated by IR modes

many center sensitive functions of D can be defined

outlook:

- random matrix theory description of D_{ϕ} Bruckmann, Verbaarschot in progr.
- gauge group *G*(2): no nontrivial center Gattringer, Maas in progr.
- I full QCD and 4-fermi deformation (Sinclair): T_{χsb} ≠ T_{deconf} how in the formalism?!