Hadron spectrum of QCD with one quark flavor

F. Farchioni

Institut für Theoretische Physik, Universität Münster

Lattice 2008, College of William and Mary, Williamsburg VA, USA

2008 July 10

VILHELMS-UNIVERSITÄ

Collaboration:

- G. Münster, T. Sudmann, J. Wuilloud (Münster),
- I. Montvay (DESY), E. E. Scholz (BNL)

- Eur. Phys. J. C52, 305-314, 2007 (arXiv:0706.1131)
- PoS (LATTICE 2007) 135 (arXiv:0710.4454)

Why $N_f = 1$ QCD?

Open questions:

- Solution of strong CP problem by $m_u = 0$?
- Spontaneous CP breaking for negative quark mass(es)?
- ▶ Relics of SUSY from an orientifold large N_c equivalence?

Recent activity:

- Quark condensate [DeGrand, Liu and Schäfer (2006)]
- Finite temperature [Takaishi and Nakamura (2007)]
- Equivalence [Armoni, Lucini, Patella and Pica (2008)]

Related poster at the conference:

K. Demmouche, "Simulation of SUSY Yang-Mills with light Wilson gluinos"

< 17 ▶

$N_f = 1 \text{ QCD}$

Absence of chiral symmetry

$$U_V(1) \times U_A(1) \xrightarrow{ABJ \text{ anomaly}} U_V(1)$$
 (baryon number)
 $U_A(1) \cdot \text{anomaly}$
 $\partial_\mu A_\mu(x) = 2m_q P(x) + 2N_f \frac{g^2}{32\pi^2} \tilde{F}F(x)$

- No new symmetry for $m_q = 0!$
- Scheme-dependent additive renormalization of m_q possible
- \rightarrow Massless limit physically not well defined? [M. Creutz (2004)]
- \rightarrow Technical: non-perturbative definition of the quark mass awkward [(partial) solution to this problem proposed here]

< 1[™] >

Expected T=0 phase diagram

Expected T=0 phase diagram

Expected T=0 phase diagram

Lattice Formulation

Wilson Action

Gauge sector: Tree-level Symanzik improved (tlSym)

$$S_{glue} = \beta \sum_{X} \left((1 - 8c_1) \right) + c_1 \right)$$

$$c_1 = -\frac{1}{12}$$

► Fermion sector: Stout smeared fermion action

[© A.D.Kennedy (2004)]

Smeared-Link in Dirac operator:

Algorithm

 Polynomial Hybrid Monte Carlo (2-step) [Montvay and Scholz (2005)]

- Sequence of PHMC trajectories + Metropolis accept-reject
- Measurement correction
- Determinant sign (see following)

Dirac operator determinant sign

►
$$\operatorname{sgn}(\operatorname{det}(D_W)) = \operatorname{sgn}(\prod_i \lambda_i) = \operatorname{sgn}(\prod_{i \in \mathbf{R}} \lambda_i) \implies$$
 look at $\lambda_i \in \mathbf{R}^-$

Real eigenvalues computation:

- Arnoldi algorithm
- Performance enhancement through polynomial preconditioning

 $D_W \rightarrow P_n(D_W)$ (compute eigenvales of $P_n(D_W)$)

- 1. power preconditioning $D_W \to P_n(D_W) = (\sigma \mathbf{1} D_W)^n$ [Neff (2001)]
- 2. iterated version $D_W \to P_{2n}(D_W) = (\sigma \mathbf{1} P_n(D_W)/\mathrm{const})^n$
- 3. Faber polynomials (optimization) [Heuveline and Sadkane (1996); Driscoll(1996)]

Hadrons: $\bar{q}q$: O^{++} (σ), O^{-+} (η); qqq: $3/2^+$ (Δ^{++}) Glueballs?

Theoretical predictions (massless quark)

t'Hooft large N_c limit: Witten-Veneziano formula

$$m_\eta^2 = rac{4N_f}{f_\eta^2}\,\chi_t$$
 [Witten; Veneziano (1979)]

▶ Orientifold large *N_c* equivalence with SUSY Yang-Mills:

$$rac{m_\eta}{m_\sigma} = rac{N_c-2}{N_c} + O(rac{1}{N_c}, rac{1}{N_c^2})$$

[Armoni, Shifman and Veneziano (2003); Armoni and Imeroni (2005)]

Necessary and sufficient condition for validity: Unbroken charge-conjugation symmetry

VILHELMS-UNIVERSITÄ

-

Partially quenched extension

Add in the theory N_V valence quarks: $(q; q_V^{(1)} \dots, q_V^{(N_V)})$

 $SU(N_V + 1|N_V)_L \otimes SU(N_V + 1|N_V)_R \xrightarrow{SSB} SU(N_V + 1|N_V)$ graded flavor symmetry $m_{val} = m_{sea}$: $SU(N_V + 1)$ "flavor symmetry" $N_V = 2$: SU(3) PCAC relation: $\partial_{\mu}(\underbrace{\bar{q}\frac{\lambda^{a}}{2}\gamma_{\mu}\gamma_{5}q}_{A_{u}^{a}(x)}) = 2 m_{q}^{PCAC} \underbrace{\bar{q}\frac{\lambda^{a}}{2}\gamma_{5}q}_{P^{a}(x)}$

Interesting application: continuum limit (?) of rooted staggered QCD. [Bernard, Golterman, Shamir and Sharpe (2008)]

Runs

L/a	Link	β	κ	<i>a</i> (fm)	<i>L</i> (fm)	r_0/a	$M_{\pi}({ m MeV})$
12	Thin	3.8	0.1700	0.19	2.1	2.66	404
12	Thin	3.8	0.1705	0.19	2.1	2.67	342
12	Thin	3.8	0.1710	0.19	2.1	2.69	260
16	Thin	4.0	0.1600	0.13	2.1	3.56	621
16	Thin	4.0	0.1610	0.13	2.1	3.61	484
16	Thin	4.0	0.1615	0.13	2.1	3.73	394
16	Stout	4.0	0.1440	0.13	2.1	3.74	374
16	Stout	4.0	0.1443	0.13	2.1	3.83	303
24	Stout	4.0	0.1443	0.13	3.1		292

Lattice scale fixed by the Sommer scale r_0 (QCD units)

・ロン ・回 と ・ ヨン ・ ヨン

WESTFÄLISCHE Wilhelms-Universität Münster

3

Minimal eigenvalue: Stout vs. Thin link

Squared Hermitian fermion matrix

Massless quark extrapolation

 ${\sf LO\ ChPT\ for\ the\ singlet:} \quad M_\eta^2 \ = \ \frac{M_\pi^2 + m_\phi^2}{1+\alpha} \quad \to \quad M_\eta \left(m_q = 0\right) = \frac{m_\phi}{\sqrt{1+\alpha}}$

[Bernard and Golterman (1993); Sharpe and Shoresh (2001)]

 $m_q \rightarrow 0$ extrapolated masses: $r_0 m_\sigma = 2.05(9) [810(35) \text{MeV}]$ $r_0 m_\eta = 0.84(5) [330(20) \text{MeV}]$ [SU(2)SYM: $m_\eta \simeq 490 \text{MeV}$, poster K. Demmouche] $\frac{m_\eta}{m_\sigma} = 0.410(32)(25)$

Orientifold planar equivalence with SYM :

$$N_c = 3: \quad \frac{m_\eta}{m_\sigma} = \frac{1}{3} [1 + \Delta], \quad \Delta = O(\frac{1}{N_c}, \frac{1}{N_c^2})$$

[Armoni, Shifman and Veneziano (2003); Armoni and Imeroni (2005)]

We find: $\Delta = 0.23(12)$

Cf. with quark condensate:
$$\frac{\langle \bar{\psi}\psi \rangle}{\langle \lambda\lambda \rangle} = \frac{1}{3} [1 + \Delta'] \quad \Delta' = -0.096(8) \quad (N_f = 0)$$

[Armoni, Lucini, Patella and Pica (2008)]

Glueballs?

PQ hadron spectrum

Perspectives

Hadron spectrum:

- more quark masses with Stout quarks
 - \rightarrow chiral fits in "pion" sector
- continue second larger volume
- second smaller lattice spacing

Phase structure:

 Explore negative quark masses on small lattices: fast determinant sign computation

Perspectives

Hadron spectrum:

- more quark masses with Stout quarks
 - \rightarrow chiral fits in "pion" sector
- continue second larger volume
- second smaller lattice spacing

Phase structure:

 Explore negative quark masses on small lattices: fast determinant sign computation

Thank you!