
GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

GPU computing for 2-d spin systemsGPU computing for 2-d spin systems
CUDA CUDA vs vs OpenGLOpenGL

F. Di RenzoF. Di Renzo
V. V. AnselmiAnselmi, G. Conti, G. Conti

Università di Parma Università di Parma andand INFN, Parma, INFN, Parma, ItalyItaly

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

OutlineOutline

 GPGPUGPGPU
GGeneraleneral P Purposeurpose computations computations onon GGraphicsraphics PProcessingrocessing UUnitsnits

 A look at the A look at the current current scenarioscenario, , both both hardwarehardware ((an impressive growthan impressive growth!) and!) and
softwaresoftware ((OpenGLOpenGL, , CUDACUDA))

 An exerciseAn exercise: (2-d) : (2-d) XYXY spin spin model model by by Hybrid MonteCarloHybrid MonteCarlo

 CUDACUDA ((CCompute ompute UUnified nified DDevice evice AArchitecturerchitecture)) implementationimplementation
 OpenGLOpenGL ((GLSLGLSL) () (Open Open GGraphics raphics LLibraryibrary)) implementationimplementation

 ConclusionsConclusions

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

A growing interest forA growing interest for GPGPU GPGPU ……
In the end: what are PCIn the end: what are PC’’s built for? what are they useful for?s built for? what are they useful for?

In recent years the more and more powerful GPU's available on the PC market have
attracted attention as a cost effective solution for parallel (SIMD) computing. The
birth of the GPGPU acronym is there as a witness.

• At the beginning one could look at GPGPU as one of the many examples of IT-DIY

• Quite soon scientific applications made their entrance

• Actually, big experts are in our community! Egri, Fodor, Hoebling, Katz, Nogradi,
Szabo, Lattice QCD Lattice QCD as as a video gamea video game, , ComputComput. . PhysPhys. . CommComm. 177 (631) 2007. 177 (631) 2007

•• Big hw companies have been becoming quite iterested players

• A good example is provided by Nvidia Nvidia (CUDA hw/sw architecture, Tesla products)

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

…… and a and a growing power growing power, actually!, actually!
Once again, keep in mind: what are PCOnce again, keep in mind: what are PC’’s built for? what are they useful for?s built for? what are they useful for?

For sure, GPU documentationsFor sure, GPU documentations provide beautiful plots (most of theprovide beautiful plots (most of the figures in the following come from figures in the following come from NvidiaNvidia))

The GPU bargain: a lot of Flops at
low prices, growing faster than in
the case of CPU.
Beware: as now, delivered in single
precision!

And And keep keep in in mindmind: : also also bandwithbandwith is is
growing faster than for growing faster than for CPU.CPU.

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

The bottom line: aThe bottom line: a basic SIMD architecture basic SIMD architecture
And resources allocated in a very different way with respect to CPUAnd resources allocated in a very different way with respect to CPU

In the end, every computer is from a logical point of view control, data-path and
storage. In the end, every computer design is an allocation of resources.

Basic points:

• a SIMD architecture (parallel processing of threads) is well suited for taking care of
the mapping of basic graphic elements (pixels, vertices, …)

• memory latencies to be hidden by computations more than by mean of a big cache

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

A couple of items to be kept in mindA couple of items to be kept in mind
In the end, there isIn the end, there is something something GPUGPU’’s s are intended for are intended for ……

The The graphic graphic pipelinepipeline

Many Many stepssteps are are needed needed in in order toorder to
get get a a 2-d 2-d bitmap for bitmap for a 3-d a 3-d imageimage::
many many SIMD SIMD resourcesresources are are devoteddevoted
to themto them. . As always As always in a pipeline, thein a pipeline, the
output of a stage output of a stage is is input input for for thethe
following following one.one.

Since Since the the fragment shading fragment shading stagestage isis
a a very powerful very powerful one, one, usage is madeusage is made
of of those resourcesthose resources..

Basic data Basic data types types are are texturestextures

BasicallyBasically, , they they are (2-d) are (2-d) matricesmatrices. . Roughly speakingRoughly speaking: : imagesimages
should be eventualy mapped to should be eventualy mapped to a a bunch bunch of of pixels pixels on the on the screenscreen..

VectorVector types types are a are a natural choicenatural choice: : RGBA RGBA texturestextures account account forfor
colours colours and and alpha channel alpha channel ((transparencytransparency).).

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

A couple of approachesA couple of approaches
ThereThere’’s almost always more than one solutions almost always more than one solution

In the following we will report on two different implentations of the same MC
simulation. They are representative of two approaches at our disposal.

✔ The first approach to GPGPU is based on OpenGL (standard graphics library).
Basically, you you talk talk to to GPU GPU as you were performing as you were performing standard standard image image processingprocessing. In
other words, your computation enters the graphic pipeline. Standard choice is to
enter the fragment stage. Both upload of your code and data and collection of
results are a bit funny (again, you are pretending to perform standard graphics).

✔ The second implementation was in the framework of CUDA. Nvidia provides a
hw/sw architecture to actually access the GPU as a (parallel) coprocessor.

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

A disclaimer: preliminary investigations, so that improvements are possible. Having
said that, let’s pin down some common features of both implementation:

✔ As for generation of momenta: flat random numbers were generated on CPU,
conversion to gaussian performed on GPU.

✔ Some operations are critical with respect to single/double precision: global sums
of the energy were performed on CPU (as well as Metropolis step).

✔ The core of the parallel computation is the leap-frog integration of equations of
motion.

✔ Results were cross-checked with series expansions in the high temperature
regime (we are friends of P. Butera, after all) and with a reference HMC (this was
done also for acceptance).

✔ The reference serial code was run on an Intel Conroe and was also taken as a
reference (at fixed HMC parameters) for performance evaluation.

Our lab: the (2-d) Our lab: the (2-d) XY spin model by Hybrid XY spin model by Hybrid MonteCarloMonteCarlo

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

TheThe CUDA CUDA environmentenvironment
NvidiaNvidia’’s s entrance to parallel computingentrance to parallel computing

Nvidia calls CUDA a hw/sw architecture which is intended to enable parallel
programming on GPU. In the end, they distribute a driver to access the device (list
of compatible GPU models extends to last three generations) and a toolkit enabling
a programming environment which is basically an extension to C.

Users Users are are provided withprovided with

•• A A nvcc nvcc C C compilercompiler
 (code on the (code on the devicedevice).).

•• Debugging Debugging and and profiling toolsprofiling tools..

•• FFT and BLAS CUDA FFT and BLAS CUDA librarieslibraries..

•• DocumentationDocumentation..

•• A A collection collection of of worked-out examplesworked-out examples..

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

A look atA look at a recenta recent GPU architecture GPU architecture
Nvidia Nvidia wants you to be aware of the basic hw wants you to be aware of the basic hw ……

Basically, Nvidia wants you to be aware that a recent GPU is collection of
multiprocessors, each made of several processors.

✔✔ In In particularparticular, one , one should notice should notice the the hierarchyhierarchy
of of memoriesmemories at at our disposalour disposal..

✔✔ Basic CUDA Basic CUDA tool is tool is a driver a driver enabling enabling thethe
access the access the device device in a in a natural natural way. Inway. In
particularparticular, the , the language enables you tolanguage enables you to
upload/download upload/download data data to/from to/from the the devicedevice
memoriesmemories..

✔✔ You You are are then entitled to make your choice then entitled to make your choice onon
where you want your where you want your data data to resideto reside..

✔✔ In the end, In the end, resourcesresources are are limited limited and and all all thethe
game game goes goes back back to their to their allocationallocation..

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

CUDA processes organizationCUDA processes organization
Quite a natural threads environmentQuite a natural threads environment

A process running on CPU (host) can start (several) kernels on GPU (device).

✔✔ Basic Basic organization is organization is blocks blocks of of threadsthreads
which which come in a come in a grid grid of of blocksblocks..

✔✔ You have commands to upload/downloadYou have commands to upload/download
data data to/from to/from the the device memorydevice memory..

✔✔ To execute To execute a a kernel your call will bekernel your call will be
My_kernelMy_kernel<<<<<<dimGdimG,,dimBdimB>>>(my_arg_1, >>>(my_arg_1, ……, my_arg_n), my_arg_n)

✔✔ Threads Threads within within a blocka block can can be be synchronizedsynchronized
((they they are are assigned by assigned by the system the system to to the the samesame
multiprocessormultiprocessor) and) and they typically they typically accessaccess
shared shared memorymemory..

✔✔ There There are are limitationslimitations to to the the number number ofof
threads within threads within a blocka block and of and of blocks within blocks within aa
gridgrid. . Then there Then there are are limitations imposed bylimitations imposed by
shared memory dimensionshared memory dimension. . Actual Actual allocationallocation
of of resources is resources is up up to to the system.the system.

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

Lattice allocationLattice allocation
First candidate is a quite a natural oneFirst candidate is a quite a natural one

✔ Allocating the lattice can be really straightforward: map a site to a thread, take
care of the sublattices borders and try to take advantage of the shared memories.
✔ Nearest neighbors are accessed in a very natural way once you get a border.
✔ We have to keep your own balance optimizing the usage of resources (well,
implementation was so easy and fast that it might well be that we can do better than
we did!)

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

It was It was easy to gaineasy to gain with respect to the serial code with respect to the serial code
Again, maybe too easy and optimal code can be still away Again, maybe too easy and optimal code can be still away ……

As said, the implementation was very fast, optimization is most probably not
complete, but getting substantial gain was easy. Implementation on a Nvidia
GeForce 8800GTX. Plot refers to a version which does not even perform gaussian
generation step on the GPU.

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

LetLet’’s now s now talk OpenGLtalk OpenGL
The first, tricky approach to GPGPU which has beenThe first, tricky approach to GPGPU which has been usedused

GLSL (Shading Language): another (less direct) extension to C, providing an
environment for access to GPU in the OpenGL framework.

✔ Vector variables are a natural choice (vec2, vec3, vec4) . vec4 are an obvious
choice for RGBA textures.

✔ Special output variables (e.g. vec4 gl_FragColor): always keep in mind you are
supposed to process images.

✔ math library available!

Your code will be essentially devoted to enter the graphic pipeline!

✔ GLSL is initialized runtime, while your kernel has to be “prepared” and then
enabled to enter the rendering pipeline.

✔ Input basically boils down to binding textures to texture units, while output is
attaching the target texture to a FBO. Finally, remember that we need a filled quad
in order to “draw” …

✔ In a pipeline output of one stage is regarded as input for next one. This restricts
RW access: PING-PONG technique!

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

Lattice allocationLattice allocation
Things can be much more natural than they appear (2-d Things can be much more natural than they appear (2-d ……))

✔✔ TexelsTexels can can be your be your spinsspins..

✔✔ Texels make Texels make a a texturetexture like spins make like spins make a a latticelattice..

✔✔ A A RGBA RGBA texturetexture easily accomodates easily accomodates 44 independentindependent
replicasreplicas of a lattice (of a lattice (maybe maybe at at different temperaturesdifferent temperatures).).
You only need to be careful You only need to be careful on on Metropolis acceptanceMetropolis acceptance
step step ((easily doneeasily done: : Y = z Y = z YYnewnew + (1-z) + (1-z) YYold old).).

✔✔ Nearest neighborsNearest neighbors are are also easily accomodatedalso easily accomodated: in 2-d : in 2-d they they are 4, so are 4, so they fit they fit in ain a
RGBA RGBA texture as welltexture as well..

2-d 2-d systems systems are are actually actually a gold a gold plated application plated application ……

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

It wasIt was even easier to gain even easier to gain!!
The more you can fit the better you do The more you can fit the better you do ……

Despite Despite the the fact that we used an fact that we used an old GPUold GPU
((Nvidia series Nvidia series 66), the), the speedup was goodspeedup was good..

 ActuallyActually, , we obtained we obtained the the best performancebest performance
on the on the largest largest latticelattice we could we could allocate.allocate.

 Execution times Execution times of a of a fixedfixed
number number of of sweeps vs sweeps vs lattice lattice sizesize

TTCPUCPU/T/TGGPGGP vs vs lattice lattice size size 

GPGPU for 2-d spin systems: CUDA GPGPU for 2-d spin systems: CUDA vs vs OpenGLOpenGLFrancesco Di RenzoFrancesco Di Renzo

Williamsburg - Williamsburg - July July 14, 200814, 2008Lattice 2008Lattice 2008

ConclusionsConclusions

•• Work Work was intended as was intended as a a benchmark exercisebenchmark exercise (XY model (XY model was really only was really only aa
lab). lab). It might well be that It might well be that one can do one can do better than thisbetter than this..

•• CUDACUDA environment is really environment is really friendlyfriendly: : it is it is easy easy to get to get a a cost-effectivecost-effective, , fairlyfairly
good good performance.performance.

•• OpenGLOpenGL (GLSL) (GLSL) implementation was actually easier than expectedimplementation was actually easier than expected! And ! And itit
was really was really good good performance on a cheap performance on a cheap devicedevice!!

