Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

GPU computing for 2-d spin systems

CUDA vs OpenGL

F. Di Renzo
V. Anselmi, G. Conti

Universita di Parma and INFN, Parma, Italy

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

Outline

» GPGPU
General Purpose computations on Graphics Processing Units

» A look at the current scenario, both hardware (an impressive growth!) and
software (OpenGL, CUDA)

» An exercise: (2-d) XY spin model by Hybrid MonteCarlo

= CUDA (Compute Unified Device Architecture) implementation
= OpenGL (GLSL) (Open Graphics Library) implementation

» Conclusions

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

A growing interest for GPGPU ...

In the end: what are PC’s built for? what are they useful for?

In recent years the more and more powerful GPU's available on the PC market have
attracted attention as a cost effective solution for parallel (SIMD) computing. The
birth of the GPGPU acronym is there as a witness.

* At the beginning one could look at GPGPU as one of the many examples of IT-DIY

 Quite soon scientific applications made their entrance

 Actually, big experts are in our community! Egri, Fodor, Hoebling, Katz, Nogradi,
Szabo, Lattice QCD as a video game, Comput. Phys. Comm. 177 (631) 2007

* Big hw companies have been becoming quite iterested players

» A good example is provided by Nvidia (CUDA hw/sw architecture, Tesla products)

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

... and a growing power, actually!

Once again, keep in mind: what are PC’s built for? what are they useful for?
For sure, GPU documentations provide beautiful plots (most of the figures in the following come from Nvidia)

The GPU bargain: a lot of Flops at Peak GFLOP/s
low prices, growing faster than in =
the case of CPU. | it S
Beware: as now, delivered in single ™ asp T
precision! "
" an
- a7 /
120 e = Nvas NV40 47 apaoH: Hi’!:g::m
GBO b _ ¢+"”M«(~.—ifi§ﬁ___——-.
. Utera =g ~—
_— /«-’7 Jan Jun Apr Jun Mar Nov May
fu’/ 2003 2004 2005 2006 2007 2008
80 /;
50 GT71 //
/"(/
40 NV4a0 7~
r'/ Harpertown g)] \
. A And keep in mind: also bandwith is
e = growing faster than for CPU.

2003 2004 2005 2005 2007

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo

GPGPU for 2-d spin systems: CUDA vs OpenGL

The bottom line: a basic SIMD architecture

And resources allocated in a very different way with respect to CPU

In the end, every computer is from a logical point of view control, data-path and
storage. In the end, every computer design is an allocation of resources.

Basic points:

Control ALU JLALU
L\w'nw i
CPU

|
= FEECT 1]
[| [] []
= I [I 0 1 |
=~ N EEEE ==
i [JEE SEElRE]
[T T T T TTTTTTTT]
=~ [] [l [
GPU

« a SIMD architecture (parallel processing of threads) is well suited for taking care of
the mapping of basic graphic elements (pixels, vertices, ...)

* memory latencies to be hidden by computations more than by mean of a big cache

Lattice 2008

Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

A couple of items to be kept in mind

In the end, there is something GPU'’s are intended for ...
The graphic pipeline

Many steps are needed in order to
get a 2-d bitmap for a 3-d image:
many SIMD resources are devoted
to them. As always in a pipeline, the
output of a stage is input for the

following one.
emory

| - Since the fragment shading stage is
e a very powerful one, usage is made
of those resources.

Per-Vertex
Operations

Per-Fragment
Operationes

Evaluator

Y

Rasterization Frame Buffer

Primitive
Assembly

Basic data types are textures LT TLTT]

[1

Il

Basically, they are (2-d) matrices. Roughly speaking: images
should be eventualy mapped to a bunch of pixels on the screen. H

w (LI T I 1]

> 11

Vector types are a natural choice: RGBA textures account for
colours and alpha channel (transparency).

R

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

A couple of approaches

There’s almost always more than one solution

In the following we will report on two different implentations of the same MC
simulation. They are representative of two approaches at our disposal.

S .
\Ezggggdi
v’ The first approach to GPGPU is based on OpenGL (standard graphics library).
Basically, you talk to GPU as you were performing standard image processing. In
other words, your computation enters the graphic pipeline. Standard choice is to
enter the fragment stage. Both upload of your code and data and collection of
results are a bit funny (again, you are pretending to perform standard graphics).

<

7ZVIDIA.

v The second implementation was in the framework of CUDA. Nvidia provides a
hw/sw architecture to actually access the GPU as a (parallel) coprocessor.

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

Our lab: the (2-d) XY spin model by Hybrid MonteCarlo
Ho= —>_, . cos(0;=10;)

A disclaimer: preliminary investigations, so that improvements are possible. Having
said that, let's pin down some common features of both implementation:

v/ As for generation of momenta: flat random numbers were generated on CPU,
conversion to gaussian performed on GPU.

v/ Some operations are critical with respect to single/double precision: global sums
of the energy were performed on CPU (as well as Metropolis step).

v The core of the parallel computation is the leap-frog integration of equations of
motion.

v/ Results were cross-checked with series expansions in the high temperature
regime (we are friends of P. Butera, after all) and with a reference HMC (this was
done also for acceptance).

v’ The reference serial code was run on an Intel Conroe and was also taken as a
reference (at fixed HMC parameters) for performance evaluation.

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo

GPGPU for 2-d spin systems: CUDA vs OpenGL

< The CUDA environment

7ZVIDIA.

Nvidia’s entrance to parallel computing

Nvidia calls CUDA a hw/sw architecture which is intended to enable parallel
programming on GPU. In the end, they distribute a driver to access the device (list
of compatible GPU models extends to last three generations) and a toolkit enabling
a programming environment which is basically an extension to C.

Users are provided with

* A nvcc C compiler
(code on the device).

* Debugging and profiling tools.
 FFT and BLAS CUDA libraries.

 Documentation.

* A collection of worked-out examples.

Lattice 2008

CPU

Application
\ 4
CUDA Libraries
} +
CUDA Runtime
4 +
CUDA Driver

GPU

Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

A look at a recent GPU architecture

Nvidia wants you to be aware of the basic hw ...

Basically, Nvidia wants you to be aware that a recent GPU is collection of
multiprocessors, each made of several processors.

Device

¢’ In particular, one should notice the hierarchy Multiprocessor N

of memories at our disposal. .

Multiprocessor 2

v Basic CUDA tool is a driver enabling the mutiprocessors
access the device in a natural way. In
particular, the Ilanguage enables you to
upload/download data to/from the device “”“‘“I “”‘“e“I "°°‘“°"I Inctruction

Unit

Shared Memory

m e mOI"I eS . Processor 1 Processor2 **°* ProcessorM
a X A A A
¢’ You are then entitled to make your choice on i ! i —
where you want your data to reside. e
Texture
Cache
v’ In the end, resources are limited and all the ‘ v ‘ T

Device Memory

game goes back to their allocation.

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

CUDA processes organization

Quite a natural threads environment

A process running on CPU (host) can start (several) kernels on GPU (device).

v/ Basic organization is blocks of threads

Host Device
which come in a grid of blocks. —
v You have comm_ands to upload/download kemel1 |— 13 [plock _— Blodk
data to/from the device memory. o | ao | 9
v To execute a kernel your call will be ree I

My kernel<<<dimG,dimB>>>(my_arg_1, ..., my_arg_n)

o erid2

v’ Threads within a block can be synchronized .
(they are assigned by the system to the same emel 2 ——
multiprocessor) and they typically access
shared memory. v

Block (1, 1)

v/ There are limitations to the number of Thread | Thread | Thread | Thread | Thread
threads within a block and of blocks within a i Bt ol sl i
grid. Then there are limitations imposed by Thread | thread | Thread | Thread | Thread
shared memory dimension. Actual allocation -

Thread | Thread | Thread | Thread | Thread

of resources is up to the system. 02| @ | @2 | G2 | @2

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

Lattice allocation

First candidate is a quite a natural one

v’ Allocating the lattice can be really straightforward: map a site to a thread, take
care of the sublattices borders and try to take advantage of the shared memories.

v Nearest neighbors are accessed in a very natural way once you get a border.

v We have to keep your own balance optimizing the usage of resources (well,
implementation was so easy and fast that it might well be that we can do better than
we did!)

* L] * L] L] L J L] L J L] L J L J L J
L] L J L J * L J L J L J L] L] L J * L]
L] L] L] L] L] L] L] L] L] L] L] L]
* L J * L J L J L J L J * L J L J L J *
L] L J * L J * * L J * L J * L J L
L] L] ® L] L J L J L] * L] * L] L]
L] L] L] L L] * L] * L] L] L] ®
L] L J L J L J L J * * * L J L J L J L]
* L J L J L J * L J L J L J L J * * L J
& L J L J L J * L J L J * L] L J * L
& L] L] L] & L] L] L] L] L] * L]
]]] @ @ [] L] ® & L] ® ®

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

It was easy to gain with respect to the serial code

Again, maybe too easy and optimal code can be still away ...

As said, the implementation was very fast, optimization is most probably not
complete, but getting substantial gain was easy. Implementation on a Nvidia
GeForce 8800GTX. Plot refers to a version which does not even perform gaussian
generation step on the GPU.

40

GAIN

i] I i
0 500 1000 1500 2000 2500
LATTICE SIZE

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

— ’
QoenGL Let’s now talk OpenGL
The first, tricky approach to GPGPU which has been used

GLSL (Shading Language): another (less direct) extension to C, providing an
environment for access to GPU in the OpenGL framework.

v/ Vector variables are a natural choice (vec2, vec3, vec4) . vec4 are an obvious
choice for RGBA textures.

v’ Special output variables (e.g. vec4 gl_FragColor): always keep in mind you are
supposed to process images.

v/ math library available!

Your code will be essentially devoted to enter the graphic pipeline!

v/ GLSL is initialized runtime, while your kernel has to be “prepared” and then
enabled to enter the rendering pipeline.

v Input basically boils down to binding textures to texture units, while output is
attaching the target texture to a FBO. Finally, remember that we need a filled quad
in order to “draw” ...

v’ In a pipeline output of one stage is regarded as input for next one. This restricts
RW access: PING-PONG technique!

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

Lattice allocation

Things can be much more natural than they appear (2-d ...)

v’ Texels can be your spins.

v Texels make a texture like spins make a lattice.

v’ A RGBA texture easily accomodates 4 independent "= |
replicas of a lattice (maybe at different temperatures).
You only need to be careful on Metropolis acceptance T A
step (easily done: Y=2zY ., +(1-2) Y 4) 1 B

v Nearest neighbors are also easily accomodated: in 2-d they are 4, so they fit in a
RGBA texture as well.

2-d systems are actually a gold plated application ...

Lattice 2008 Williamsburg - July 14, 2008

Francesco Di Renzo

GPGPU for 2-d spin systems: CUDA vs OpenGL

It was even easier to gain!

The more you can fit the better you do ...

Tempi di esecuzion

L i
300 400 500 600 700 800
Dimensione lineare del reticolc

1
100 200 900 1000 1100

A Execution times of a fixed
number of sweeps vs lattice size

TCPU/TGGP vs lattice size =

Lattice 2008

Despite the fact that we used an old GPU
(Nvidia series 6), the speedup was good.

Actually, we obtained the best performance
on the largest lattice we could allocate.

Fattore di guadagno

45 T T T T
| [==F

GOt [S -
1 SRR R R R PR AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -
BO e i —
L R T TR R TR T PR -
1l SRR R R R PP PR —
16 F oL A —
1] SRR R PR CR PR -

[I UL SUUUT: < SNt SOt SO SRRSO SO ST S i

D 1 1 1 1 I 1 1 1 1

100 200 300 400 500 600 700 §00 900 1000 1100

Dimensione lineare del reticolc

Williamsburg - July 14, 2008

Francesco Di Renzo GPGPU for 2-d spin systems: CUDA vs OpenGL

Conclusions

« Work was intended as a benchmark exercise (XY model was really only a
lab). It might well be that one can do better than this.

<

7ZVIDIA.

« CUDA environment is really friendly: it is easy to get a cost-effective, fairly
good performance.

DpenGL
L

* OpenGL (GLSL) implementation was actually easier than expected! And it
was really good performance on a cheap device!

Lattice 2008 Williamsburg - July 14, 2008

