Fluctuation of Goldstone modes and the chiral transition in QCD[†]

Frithjof Karsch, BNL& Bielefeld University

Goldstone modes in 3 and 4 dimensions

O(N) models

(2+1)-flavor QCD below T_c

 $N_{ au}=4,\ 6 ext{ and } 8$

(2+1)-flavor QCD at T_c

 $N_{ au} = 4$

Conclusions

 [†] This talk is based on preliminary numerical results obtained by the hotQCD and RBC-Bielefeld collaborations

2 (+1)-flavor QCD and O(N) spin models

physics of QCD at low energies as well as close to the chiral phase transition is described by effective, O(N) symmetric spin models

- T = 0: chiral symmetry breaking at T = 0, $m_q = 0$ as well as leading temperature and quark mass dependent corrections are related to universal properties of 4-dimensional, O(4) symmetric spin models
- $T \simeq T_c$: chiral symmetry restoration at $T = T_c$, $m_q = 0$ as well as leading temperature and quark mass dependent corrections are related to universal properties of 3-dimensional, O(4) symmetric spin models

R. Pisarski and F. Wilczek, PRD29 (1984) 338 K. Rajagopal and F. Wilczek, hep-ph/0011333 A. Pelissetto and E. Vicari, Phys. Rept 368 (2002) 549

Spontaneous Symmetry Breaking

O(N) spin models in *d*-dimensions

- non-vanishing expectation value, Σ , of the scalar field, $\Phi_{||}$, parallel to the symmetry breaking field *H*
- (N-1) transverse (Goldstone) modes give corrections for non-zero
 H (spin waves); controlled by Σ and the decay constant F for
 Goldstone modes

$$\Sigma_H = \Sigma_0 \left(1 - rac{N-1}{32\pi^2} rac{\Sigma_0 H}{F_0^4} \ln \left(\Sigma_0 H/F_0^2 \Lambda_\Sigma
ight) + \mathcal{O}(H^2)
ight) ~~,~~d=4$$

$$\Sigma_H = \Sigma_0 \left(1 + rac{N-1}{8\pi} rac{(\Sigma_0 H)^{1/2}}{F_0^3} + \mathcal{O}(H)
ight) \ , \ d=3$$

P. Hasenfratz and H, Leutwyler, NPB343, 241 (1990) D.J. Wallace and R.K.P. Zia, PRB12, 5340 (1975)

Spontaneous Symmetry Breaking (cont.)

(chiral) susceptibilities diverge below T_c for H
ightarrow 0

$$\chi_H = rac{\mathrm{d}\Sigma_H}{\mathrm{d}H} \sim \langle \Phi_{||}^2
angle - \langle \Phi_{||}
angle^2 \sim egin{cases} H^{-1/2} &, \ d=3 \ -\ln H &, \ d=4 \end{cases}$$

divergence in the zero-field (chiral) limit

$$\chi_{H=0}(T) = \begin{cases} \infty & , T \leq T_c \\ A(T-T_c)^{-\gamma} & , T > T_c \end{cases}$$

divergence at T_c

$$\chi_H(T=T_c) = H^{1/\delta - 1}$$
, $T=T_c$

crit. exp. O(2) [O(4)]: $\gamma = 1.32~[1.45], 1 - 1/\delta = 0.79~[0.79]$

O(N) spin models in 3-dimensions

influence of Goldstone modes on spontaneous symmetry breaking below T_c and the consistency with critical behavior at T_c has been established innumerical simulationsJ. Engels and T. Mendes, NP B572 (2000) 289

$$\ \, \bullet \ \, T < T_c: \Sigma_H = c_0(T) + c_1(T) H^{1/2} \ \, \Rightarrow \ \, \chi_H = \partial \Sigma / \partial H \sim H^{-1/2}$$

 $T \simeq T_c: scaling functions, e.g.$

$$\Sigma_H = H^{1/\delta} f_s(t/H^{1/\beta\delta}) , \ t = |T - T_c|/T_c$$

 $\Rightarrow H = 0: \ \Sigma \sim t^{\beta} , \ t = 0: \Sigma \sim H^{1/\delta}$

magnetic equation of state incorporates both features

D.J. Wallace and R.K.P. Zia, PRB12, 5340 (1975)

J.Engels and T. Mendes, NP Proc.Suppl. 83, 700 (2000)

$$rac{1}{eta} \Sigma^{\delta-1} \chi_H = ilde{c_0} + ilde{c_1} y^{-1/2} \ , \ y = H/\Sigma^{\delta}$$

3-d, O(4) models close to T_c

- condensate shows \sqrt{H} dependence;
 scaling sets in for smaller H closer to T_c
- magnetic equation of state reflects O(4) scaling

Goldstone modes in adjoint QCD

QCD with 2-flavor, adjoint (staggered) fermions

- QCD with fermions in the adjoint representation has two distinct phase transitions with $T_{deconf} < T_{chiral}$
- the intermediate deconfined phase shows chiral behavior as expected from 3-dimensional O(N) models
- the disconnected part of the chiral susceptibility diverges with $1/\sqrt{m_a}$ for all $T_{deconf} < T < T_{chiral}$:

FK and M. Lütgemeier, NPB550, 449 (1999)

J, Engels, S. Holtmann and T. Schulze, NP B724, 357 (2005)

$$egin{aligned} \chi_m &= & rac{\partial \langle ar{\psi} \psi
angle}{\partial m_q a} \equiv \chi_{disc} + \chi_{con} \ \chi_{disc} &= & rac{1}{N_\sigma^3 N_ au} \left(ig\langle ({
m Tr} M^{-1})^2 ig
angle - ig\langle {
m Tr} M^{-1} ig
angle^2
ight) \end{aligned}$$

Frithjof Karsch, Lattige 2008 - p. 7/16

2-flavor adjoint QCD, $N_{ au}=4$

- Goldstone modes lead to \sqrt{m} –terms in $\langle \bar{\psi}\psi \rangle$ $\Rightarrow 1/\sqrt{m}$ singularity in χ_m
- O(N) scaling at T_c barely visible; buildts up for small m_q only

2-flavor adjoint QCD, $N_{ au}=4$

- Goldstone modes lead to \sqrt{m} –terms in $\langle \bar{\psi}\psi \rangle$ $\Rightarrow 1/\sqrt{m}$ singularity in χ_m
- O(N) scaling at T_c barely visible; buildts up for small m_q only

2-flavor adjoint QCD, $N_{ au}=4$

- Goldstone modes lead to \sqrt{m} –terms in $\langle \bar{\psi}\psi \rangle$ $\Rightarrow 1/\sqrt{m}$ singularity in χ_m
- O(N) scaling at T_c barely visible; buildts up for small m_q only

Goldstone modes in (2+1)-flavor QCD

(RBC-Bielefeld and hotQCD Collaborations)

QCD with 2 light and a 'physical' strange quark mass;

staggered fermions, p4 and asqtad actions, RHMC simulations

- Calculations have been performed on $N_{\sigma}^3 N_{\tau}$ lattices for $N_{\tau} = 4, \ 6 \ \text{and} \ 8$
- Solution of the second sec
- at present, most detailed analysis for $N_{ au} = 4$:

 $0.0125 \leq m_l/m_s \leq 0.4$

physical value: $m_l/m_s \simeq 0.05 \Rightarrow 70~{
m MeV} \le m_\pi \le 320~{
m MeV}$

 \Rightarrow find evidence for $1/\sqrt{m_l}$ divergence in χ_{disc} in the symmetry broken phase

$N_{\tau} = 4$: chiral condensate

(RBC-Bielefeld collaboration, in preparation)

ullet evidence for $\sqrt{m_l}$ term in $\langle ar{\psi} \psi
angle$

for orientation: $eta=3.28~T\simeq188$ MeV, $eta=3.30~T\simeq196$ MeV

$N_{ au} = 4: 0.0125 \le m_l/m_s \le 0.4$

(RBC-Bielefeld collaboration, in preparation)

$$\chi_{disc} \hspace{2mm} = \hspace{2mm} rac{1}{N_{\sigma}^3 N_{ au}} \left(rac{n_f}{4}
ight)^2 \left(\left\langle ({
m Tr} M^{-1})^2
ight
angle - \left\langle {
m Tr} M^{-1}
ight
angle^2
ight)$$

• evidence for $1/\sqrt{m_l}$ singularity in χ_{disc}

for orientation: $eta=3.28~T\simeq188$ MeV, $eta=3.30~T\simeq196$ MeV

• scaling for $m_l/m_s \lesssim 0.1$ all the way to the (pseudo-)critical temperature

• scaling sets in for smaller quark masses closer to T_c (similar to 3-d, O(N) models)

Frithiof Karsch, Lattice 2008 – p. 11/16

$N_{ au} = 6: 0.1 \le m_l/m_s \le 0.4$

(RBC-Bielefeld collaboration)

evidence for $1/\sqrt{m_l}$ singularity in $N_{\tau} = 6$ data has been observed and commented upon already in

M. Cheng et al. (RBC-Bielefeld), PRD74 (2006) 054507

scaling for $m_l/m_s \lesssim 0.2$,

for orientation: $\beta = 3.52~T \simeq 185$ MeV, $\beta = 3.54~T \simeq 196$ MeV

$N_{ au}=8$: $0.05\leq m_l/m_s\leq 0.2$

p4-data:

(RBC-Bielefeld and hotQCD collaborations)

- evidence for $1/\sqrt{m_l}$ singularity in a wide temperature range
- steep edge at high temperature is approximately quark mass independent (as expected: $\langle \bar{\psi}\psi \rangle \sim c(T)m_l \Rightarrow \chi_m \sim c(T)$)

$N_{\tau} = 8$: p4 and asqtad

hotQCD and RBC-Bielefeld collaborations, preliminary

p4 and asqtad calculation lead to similar quark mass dependence

$N_{\tau} = 8$: p4 and asqtad

hotQCD and RBC-Bielefeld collaborations, preliminary

- p4 and asqtad calculation lead to similar quark mass dependence
- the rapid drop at large temperature is consistent with the expected O(2) [O(4)] scaling; however no 'critical behavior' of peak heights
- to firmly establish these features requires a more thorough analysis of the (m_l, T) -dependence of $\chi_{l,disc}$

$N_{ au} = 4$: O(2) [O(4)] scaling at β_c

determining β_c using the χ^2 -method: J. Engels et al., PLB298 (1993) 154

fit: $\langle ar{\psi}\psi
angle = am_l^{1/\delta} + bm_l \;,\; 1/\delta = 0.21$

minimize $\chi^2 \Rightarrow \beta_c$; in agreement with earlier determination:

M. Cheng et al, PRD74 (2006) 054507

error on β_c : $\chi^2 \leq 2 \Rightarrow$ narrow scaling window $\Delta T \simeq \pm 1.5$ MeV evidence for O(N) scaling at T_c for $m_l \leq m_{phys}$

Conclusions

Goldstone modes control properties of the chiral condensate and its susceptibility in the confined phase

3-d, O(N) scaling close to T_c

(2+1)-flavor QCD

the chiral susceptibility diverges like $1/\sqrt{m_l}$ for $T \leq T_c$; this scaling sets in ready in the regime of physical quark mass values

In order to disentangle the thermal critical behavior of the chiral condensate and its susceptibility from the singular behavior induced by Goldstone modes a detailed analysis of the temperature and quark mass dependence is necessary