Generalisations of the Ginsparg-Wilson relation and a remnant of supersymmetry on the lattice

Georg Bergner
Friedirch-Schiller-Universität Jena

Lattice 2008
14.7.2008

GB, F. Bruckmann, J. M. Pawlowski arXiv:0807.1110
(1) Introduction: blocking the continuum
(2) Blocking induced symmetry relations
(3) Solution of the additional constraint for SUSY

4 Solutions for supersymmetric quantum mechanics
(5) Conclusions and outlook

Introduction

Introduction

The blocking transformation

- averaging of the continuum field $\varphi(x)$ around the lattice point $x_{n}=a n$:

$$
\Phi_{n}[\varphi]:=\int d x f\left(x-x_{n}\right) \varphi(x)
$$

The blocking transformation

- averaging of the continuum field $\varphi(x)$ around the lattice point $x_{n}=a n:$

$$
\Phi_{n}[\varphi]:=\int d x f\left(x-x_{n}\right) \varphi(x)
$$

- define a blocked lattice action $S[\phi]$ depending on lattice fields ϕ_{n} for a given continuum action $S_{\mathrm{cl}}[\varphi]$

$$
e^{-S[\phi]}:=\frac{1}{\mathcal{N}} \int d \varphi e^{-\frac{1}{2}(\phi-\Phi[\varphi])_{n} \alpha_{n m}(\phi-\Phi[\varphi])_{m}} e^{-S_{\mathrm{cl}}[\varphi]}
$$

The blocking transformation

- averaging of the continuum field $\varphi(x)$ around the lattice point $x_{n}=a n$:

$$
\Phi_{n}[\varphi]:=\int d x f\left(x-x_{n}\right) \varphi(x)
$$

- define a blocked lattice action $S[\phi]$ depending on lattice fields ϕ_{n} for a given continuum action $S_{\mathrm{cl}}[\varphi]$

$$
e^{-S[\phi]}:=\frac{1}{\mathcal{N}} \int d \varphi e^{-\frac{1}{2}(\phi-\Phi[\varphi])_{n} \alpha_{n m}(\phi-\Phi[\varphi])_{m}} e^{-S_{\mathrm{cl}}[\varphi]}
$$

- simple interpretation if $f\left(x-x_{n}\right) \rightarrow \delta\left(x-x_{n}\right)$ and $\alpha \rightarrow \infty$ as $a \rightarrow 0$ since $S \rightarrow S_{\mathrm{cl}}$; more generally

$$
\int d \phi e^{-S[\phi]+J \phi}=e^{\frac{1}{2} J \alpha^{-1} J} \int d \varphi e^{-S_{\mathrm{cl}}[\varphi]+J \Phi[\varphi]}
$$

A lattice symmetry

- continuum action is invariant under infinitesimal continuum symmetry transformations: $S_{\mathrm{cl}}[\varphi+\delta \varphi]=S_{\mathrm{cl}}\left[(1+\varepsilon \tilde{M})^{i j} \varphi^{j}\right]=S_{\mathrm{cl}}[\varphi]$
metry transformations \tilde{M} into naive lattice transformations M

A lattice symmetry

- continuum action is invariant under infinitesimal continuum symmetry transformations: $S_{\mathrm{cl}}[\varphi+\delta \varphi]=S_{\mathrm{cl}}\left[(1+\varepsilon \tilde{M})^{i j} \varphi^{j}\right]=S_{\mathrm{cl}}[\varphi]$
- to translate the continuum symmetry transformations \tilde{M} into naive lattice transformations M :

$$
\Phi_{n}^{i}[\tilde{M} \varphi]=\int d x f_{n}(x) \tilde{M}^{i j} \varphi^{j}(x)=M_{n m}^{i j} \Phi_{m}^{j}[\varphi]
$$

A lattice symmetry

- continuum action is invariant under infinitesimal continuum symmetry transformations: $S_{\mathrm{cl}}[\varphi+\delta \varphi]=S_{\mathrm{cl}}\left[(1+\varepsilon \tilde{M})^{i j} \varphi^{j}\right]=S_{\mathrm{cl}}[\varphi]$
- to translate the continuum symmetry transformations \tilde{M} into naive lattice transformations M :

$$
\Phi_{n}^{i}[\tilde{M} \varphi]=\int d x f_{n}(x) \tilde{M}^{i j} \varphi^{j}(x) \stackrel{!}{=} M_{n m}^{i j} \Phi_{m}^{j}[\varphi]
$$

- can not be found for every \tilde{M} and $f \hookrightarrow$ additional constraint

A lattice symmetry

- continuum action is invariant under infinitesimal continuum symmetry transformations: $S_{\mathrm{cl}}[\varphi+\delta \varphi]=S_{\mathrm{cl}}\left[(1+\varepsilon \tilde{M})^{i j} \varphi^{j}\right]=S_{\mathrm{cl}}[\varphi]$
- to translate the continuum symmetry transformations \tilde{M} into naive lattice transformations M :

$$
\Phi_{n}^{i}[\tilde{M} \varphi]=\int d x f_{n}(x) \tilde{M}^{i j} \varphi^{j}(x) \stackrel{!}{=} M_{n m}^{i j} \Phi_{m}^{j}[\varphi]
$$

- can not be found for every \tilde{M} and $f \hookrightarrow$ additional constraint
- naive lattice symmetry transformations: $(\delta \phi)_{m}^{i}=\varepsilon M_{n m}^{i j} \phi_{m}^{j}$
- naive invariance: $S[\phi+\delta \phi]=S[\phi]$

Inherited symmetry of the blocked action

$$
e^{-S[\phi]}=\frac{1}{\mathcal{N}} \int d \varphi e^{-S_{\mathrm{cl}}[\varphi]} e^{-\frac{1}{2}(\phi-\Phi[\varphi]) \alpha(\phi-\Phi[\varphi])}
$$

Inherited symmetry of the blocked action

$$
M_{n m}^{i j} \phi_{m}^{j} \frac{\delta}{\delta \phi_{n}^{i}} e^{-S[\phi]}=\frac{1}{\mathcal{N}} \int d \varphi e^{-S_{\mathrm{cl}}[\varphi]} M_{n m}^{i j} \phi_{m}^{j} \frac{\delta}{\delta \phi_{n}^{i}} e^{-\frac{1}{2}(\phi-\Phi[\varphi]) \alpha(\phi-\Phi[\varphi])}
$$

- infinitesimal naive transformation of the blocked action:

Inherited symmetry of the blocked action

$M_{n m}^{i j} \phi_{m}^{j} \frac{\delta}{\delta \phi_{n}^{i}} e^{-S[\phi]}=\frac{1}{\mathcal{N}} \int d \varphi e^{-S_{\mathrm{cl}}[\varphi]} M_{n m}^{i j}(\phi-\Phi)_{m}^{j} \frac{\delta}{\delta \phi_{n}^{i}} e^{-\frac{1}{2}(\phi-\Phi[\varphi]) \alpha(\phi-\Phi[\varphi])}$

- infinitesimal naive transformation of the blocked action:
- infinitesimal continuum transformation of φ; use additional constraint: $\Phi[\tilde{M} \varphi]=M \Phi[\varphi]$

Inherited symmetry of the blocked action

- infinitesimal naive transformation of the blocked action:
- infinitesimal continuum transformation of φ; use additional constraint: $\Phi[\tilde{M} \varphi]=M \Phi[\varphi]$
- express $(\phi-\Phi)$ in terms of $\frac{\delta}{\delta \phi}$ and α^{-1}

$$
M_{n m}^{i j} \phi_{m}^{j} \frac{\delta S}{\delta \phi_{n}^{i}}=\left(M \alpha^{-1}\right)_{n m}^{i j}\left(\frac{\delta S}{\delta \phi_{m}^{j}} \frac{\delta S}{\delta \phi_{n}^{i}}-\frac{\delta^{2} S}{\delta \phi_{m}^{j} \delta \phi_{n}^{i}}\right)+(\mathrm{S} \operatorname{Tr} M-\mathrm{S} \operatorname{Tr} \tilde{M})
$$

STr \tilde{M} accounts for infinitesimal change of the measure \rightarrow anomaly

Symmetry relation for the lattice action

$$
M_{n m}^{i j} \phi_{m}^{j} \frac{\delta S}{\delta \phi_{n}^{i}}=\left(M \alpha^{-1}\right)_{n m}^{i j}\left(\frac{\delta S}{\delta \phi_{m}^{j}} \frac{\delta S}{\delta \phi_{n}^{i}}-\frac{\delta^{2} S}{\delta \phi_{m}^{j} \delta \phi_{n}^{i}}\right)+(S \operatorname{Tr} M-S \operatorname{Tr} \tilde{M})
$$

- α_{S}^{-1} drops out if $\left(\alpha_{S}^{-1} M\right)^{T}+M \alpha_{S}^{-1}=0$ (supertransposed $\alpha=\alpha^{T}$) \Rightarrow same relations for α^{-1} and $\alpha^{-1}+\alpha_{S}^{-1}$

Symmetry relation for the lattice action

$$
M_{n m}^{i j} \phi_{m}^{j} \frac{\delta S}{\delta \phi_{n}^{i}}=\left(M \alpha^{-1}\right)_{n m}^{i j}\left(\frac{\delta S}{\delta \phi_{m}^{j}} \frac{\delta S}{\delta \phi_{n}^{i}}-\frac{\delta^{2} S}{\delta \phi_{m}^{j} \delta \phi_{n}^{i}}\right)+(\mathrm{S} \operatorname{Tr} M-\mathrm{S} \operatorname{Tr} \tilde{M})
$$

- α_{S}^{-1} drops out if $\left(\alpha_{S}^{-1} M\right)^{T}+M \alpha_{S}^{-1}=0$ (supertransposed $\alpha=\alpha^{T}$)
\Rightarrow same relations for α^{-1} and $\alpha^{-1}+\alpha_{S}^{-1}$
- for a quadratic action, $S=\frac{1}{2} \phi_{n}^{i} K_{n m}^{i j} \phi_{m}^{j}$, the relation turns into $M^{T} K+\left(M^{T} K\right)^{T}=K^{T}\left[\left(M \alpha^{-1}\right)^{T}+M \alpha^{-1}\right] K$ and can be rewritten as

$$
M_{\mathrm{def}}{ }^{T} K+K^{T} M_{\mathrm{def}}=0 ; \quad M_{\mathrm{def}}=M\left(\mathbb{1}-\alpha^{-1} K\right)
$$

Symmetry relation for the lattice action

$$
M_{n m}^{i j} \phi_{m}^{j} \frac{\delta S}{\delta \phi_{n}^{i}}=\left(M \alpha^{-1}\right)_{n m}^{i j}\left(\frac{\delta S}{\delta \phi_{m}^{j}} \frac{\delta S}{\delta \phi_{n}^{i}}-\frac{\delta^{2} S}{\delta \phi_{m}^{j} \delta \phi_{n}^{i}}\right)+(\mathrm{S} \operatorname{Tr} M-S \operatorname{Tr} \tilde{M})
$$

- α_{S}^{-1} drops out if $\left(\alpha_{S}^{-1} M\right)^{T}+M \alpha_{S}^{-1}=0$ (supertransposed $\alpha=\alpha^{T}$) \Rightarrow same relations for α^{-1} and $\alpha^{-1}+\alpha_{S}^{-1}$
- for a quadratic action, $S=\frac{1}{2} \phi_{n}^{i} K_{n m}^{i j} \phi_{m}^{j}$, the relation turns into $M^{T} K+\left(M^{T} K\right)^{T}=K^{T}\left[\left(M \alpha^{-1}\right)^{T}+M \alpha^{-1}\right] K$ and can be rewritten as

$$
M_{\mathrm{def}}{ }^{\top} K+K^{T} M_{\mathrm{def}}=0 ; \quad M_{\mathrm{def}}=M\left(\mathbb{1}-\alpha^{-1} K\right)
$$

- conditions for $M_{\text {def }}$ to define a deformed symmetry
(1) $M_{\text {def }}$ local
(2) $M_{\text {def }}$ approaches continuum counterpart (excludes $M_{\text {def }}=0$)
\Rightarrow restricts possible choices of α and K

Symmetry relation for the lattice action

$$
\begin{array}{r}
\begin{array}{c}
\text { Ginsparg-Wilson relation } \\
\alpha_{n m}=\frac{1}{a} \delta_{n m} \\
\left\{\gamma_{5}, \mathcal{D}\right\}=a \mathcal{D} \gamma_{5} \mathcal{D}
\end{array} \\
M^{T} K+\left(M^{T} K\right)^{T}=K^{T}\left[\left(M \alpha^{-1}\right)^{T}+M \alpha^{-1}\right] K \\
M_{\text {def }}^{T} K+K^{T} M_{\text {def }}=0 ; M_{\text {def }}=M\left(\mathbb{1}-\alpha^{-1} K\right) \\
G W:\left\{\gamma_{5, \text { def }}, \mathcal{D}\right\}=0 ; \gamma_{5, \text { def }}=\gamma_{5}\left(\mathbb{1}-\alpha^{-1} \mathcal{D}\right)
\end{array}
$$

(1) $M_{\text {def }}$ local
(2) $M_{\text {def }}$ approaches continuum counterpart

GW: excludes Wilson fermions

Solution of the additional constraint for SUSY

$$
\int d x f(x-a n) \tilde{M}^{i j} \varphi^{j}(x)=M_{n m}^{i j} \Phi_{m}^{j}[\varphi]=M_{n m}^{i j} \int d x f(x-a m) \varphi^{j}(x)
$$

- trivial if $\tilde{M}^{i j}$ merely acts on multiplet index j; but for SUSY derivative operators appear in the continuum transformations

Solution of the additional constraint for SUSY

$$
\int d x f(x-a n) \tilde{M}^{i j} \varphi^{j}(x)=M_{n m}^{i j} \Phi_{m}^{j}[\varphi]=M_{n m}^{i j} \int d x f(x-a m) \varphi^{j}(x)
$$

- trivial if $\tilde{M}^{i j}$ merely acts on multiplet index j; but for SUSY derivative operators appear in the continuum transformations
- must hold for all φ; in Fourier space

$$
\begin{array}{r}
{\left[\nabla\left(p_{k}\right)-i p_{k}\right] f\left(p_{k}\right)=0} \\
\text { for } p_{k}=\frac{2 \pi}{L} k, k \in \mathbb{Z} \text { and } \nabla\left(p+\frac{2 \pi}{a}\right)=\nabla(p)
\end{array}
$$

Solution of the additional constraint for SUSY

$$
\int d x f(x-a n) \tilde{M}^{i j} \varphi^{j}(x)=M_{n m}^{i j} \phi_{m}^{j}[\varphi]=M_{n m}^{i j} \int d x f(x-a m) \varphi^{j}(x)
$$

- trivial if $\tilde{M}^{i j}$ merely acts on multiplet index j; but for SUSY derivative operators appear in the continuum transformations
- must hold for all φ; in Fourier space

$$
\begin{array}{r}
{\left[\nabla\left(p_{k}\right)-i p_{k}\right] f\left(p_{k}\right)=0} \\
\text { for } p_{k}=\frac{2 \pi}{L} k, k \in \mathbb{Z} \text { and } \nabla\left(p+\frac{2 \pi}{a}\right)=\nabla(p)
\end{array}
$$

- solutions: nonlocal SLAC-derivative; otherwise effective cutoff below $\frac{2 \pi}{a}$ is introduced by $f(p)$

Setting for supersymmetric quantum mechanics

- transformations in the continuum,

$$
\begin{aligned}
& \varphi^{i}(x)=(\chi(x), F(x), \psi(x), \bar{\psi}(x)): \\
& \delta \chi=-\bar{\varepsilon} \psi+\varepsilon \bar{\psi} \quad \delta F=-\bar{\varepsilon} \partial \psi-\varepsilon \partial \bar{\psi} \\
& \delta \psi=-\varepsilon \partial \chi-\varepsilon F \quad \delta \bar{\psi}=\bar{\varepsilon} \partial \tilde{\varphi}-\bar{\varepsilon} F
\end{aligned}
$$

- naive transformations on the lattice, $\phi_{n}^{i}=\left(\chi_{n}, F_{n}, \psi_{n}, \bar{\psi}_{n}\right)$:
$\delta\left(\begin{array}{c}\chi \\ F \\ \psi \\ \bar{\psi}\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & -\bar{\varepsilon} & \varepsilon \\ 0 & 0 & -\bar{\varepsilon} \nabla & -\varepsilon \nabla \\ -\varepsilon \nabla & -\varepsilon & 0 & 0 \\ \bar{\varepsilon} \nabla & -\bar{\varepsilon} & 0 & 0\end{array}\right)\left(\begin{array}{c}\varphi \\ F \\ \psi \\ \bar{\psi}\end{array}\right)=(\varepsilon M+\bar{\varepsilon} \bar{M}) \phi$
∇ solution of additional constraint (SLAC-derivative)

Setting for supersymmetric quantum mechanics

- invariant quadratic action in the continuum:

$$
\begin{aligned}
S_{\mathrm{cl}} & =\int d x\left[\frac{1}{2}\left(\partial_{x} \chi\right)+\bar{\psi} \partial_{x} \psi-\frac{1}{2} F^{2}+\bar{\psi} W^{\prime}(\chi) \psi-F W(\chi)\right] \\
& =\int d x\left[\frac{1}{2}\left(\partial_{x} \chi\right)+\bar{\psi} \partial_{x} \psi-\frac{1}{2} F^{2}+m \bar{\psi} \psi-m F \chi\right]
\end{aligned}
$$

- ansatz for the lattice action $S=\frac{1}{2} \phi K \phi$:

$$
\frac{K_{i j}}{a}=\left(\begin{array}{cccc}
-\square_{n m} & -m_{b, n m} & 0 & 0 \\
-m_{b, n m} & -I_{n m} & 0 & 0 \\
0 & 0 & 0 & \left(\hat{\nabla}-m_{f}\right)_{n m} \\
0 & 0 & \left(\hat{\nabla}+m_{f}\right)_{n m} & 0
\end{array}\right)
$$

I, \square, m_{b}, m_{f} symmetric; $\hat{\nabla}$ antisymmetric translation invariance: all circulant matrices (\rightarrow commute)

Solutions for a quadratic action

- solve $M_{\text {def }}^{T} K+K^{T} M_{\text {def }}=0$ with $M_{\text {def }}=M\left(\mathbb{1}-\alpha^{-1} K\right)$
- diagonal blocking matrix (as for overlap: $\alpha \sim \delta_{n m}$) leads to nonlocal action (use freedom to choose α_{S}^{-1} to reduce matrix elements)

$$
a\left(\alpha^{-1}\right)_{n m}=\left(\begin{array}{cccc}
a_{2} & 0 & 0 & 0 \\
0 & a_{0} & 0 & 0 \\
0 & 0 & 0 & -a_{1} \\
0 & 0 & a_{1} & 0
\end{array}\right) \begin{array}{ll}
\hat{\nabla}+m_{f}=\frac{\nabla+m_{b}}{\left.1+a_{0}+a_{1} m b+m_{b}+a_{1} m b\right) \nabla} \\
& -\square+m_{b}^{2}=\frac{-\nabla^{2}+m_{b}^{b}}{1+a_{0}-a_{2} \nabla^{2}} \\
l=\mathbb{1}
\end{array}
$$

Solutions for a quadratic action

- solve $M_{\text {def }}^{T} K+K^{T} M_{\text {def }}=0$ with $M_{\text {def }}=M\left(\mathbb{1}-\alpha^{-1} K\right)$
- diagonal blocking matrix (as for overlap: $\alpha \sim \delta_{n m}$) leads to nonlocal action (use freedom to choose α_{S}^{-1} to reduce matrix elements)

$$
a\left(\alpha^{-1}\right)_{n m}=\left(\begin{array}{cccc}
a_{2} & 0 & 0 & 0 \\
0 & a_{0} & 0 & 0 \\
0 & 0 & 0 & -a_{1} \\
0 & 0 & a_{1} & 0
\end{array}\right) \begin{array}{ll}
& \hat{\nabla}+m_{f}=\frac{\nabla+m_{b}}{1+a_{0}+a_{1} m b+m_{b}} \delta_{n m} ; \\
& -\square+m_{b}^{2}=\frac{-\nabla^{2}+m_{b}}{\left.1+a_{1}+a_{2} m b\right) \nabla} \\
l=\mathbb{1}
\end{array}
$$

- local solutions like $\hat{\nabla}$ symmetric derivative, $\square=\hat{\nabla}^{2}, I=\mathbb{1}$, and $m_{b}=m_{f}=m+m_{w}$ generically lead to nonlocal α^{-1}

Solutions for a quadratic action

- solve $M_{\text {def }}^{T} K+K^{T} M_{\text {def }}=0$ with $M_{\text {def }}=M\left(\mathbb{1}-\alpha^{-1} K\right)$
- diagonal blocking matrix (as for overlap: $\alpha \sim \delta_{n m}$) leads to nonlocal action (use freedom to choose α_{S}^{-1} to reduce matrix elements)

$$
a\left(\alpha^{-1}\right)_{n m}=\left(\begin{array}{cccc}
a_{2} & 0 & 0 & 0 \\
0 & a_{0} & 0 & 0 \\
0 & 0 & 0 & -a_{1} \\
0 & 0 & a_{1} & 0
\end{array}\right) \begin{array}{ll}
& \hat{\nabla}+m_{f}=\frac{\nabla+m_{b}}{1+a_{0}+a_{1} m b+m_{b}} \delta_{n m} ; \\
& -\square+m_{b}^{2}=\frac{-\nabla^{2}+m_{b}}{\left.1+a_{1}+a_{2} m b\right) \nabla} \\
l=\mathbb{1}
\end{array}
$$

- local solutions like $\hat{\nabla}$ symmetric derivative, $\square=\hat{\nabla}^{2}, I=\mathbb{1}$, and $m_{b}=m_{f}=m+m_{w}$ generically lead to nonlocal α^{-1}
- demand $M_{\text {def }}$ and K

$$
M_{\mathrm{def}}=\left(\begin{array}{cccc}
0 & 0 & 0 & I \\
0 & 0 & 0 & -I \nabla \\
-\nabla & -I \nabla & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) ; \begin{aligned}
& \hat{\nabla}=I \nabla \\
& I \rightarrow 1, I \nabla \rightarrow \partial_{\times} \text {cont. limit } \\
& I \text { and } I \nabla \text { must be local }
\end{aligned}
$$

Beyond the quadratic action

- final goal: construct a supersymmetric local interacting lattice action
- the given relation extends beyond the quadratic case
- it connects different orders of the field \rightarrow generically nonpolynomial solutions
- not unexpected since blocked action is comparable to the effective action
- under special conditions a truncation can be achieved

Conclusions and outlook

- symmetry of a continuum action implies the fulfilment of certain relations for the lattice action which ensure a symmetric continuum limit and define deformed lattice symmetry operators
- requirement: definition of a naive lattice transformation by the "averaged" continuum symmetry transformation (additional constraint) \hookrightarrow SLAC-derivative for SUSY
- severe restriction: $M_{\text {def }}$ and the action must be local; can be fulfilled under special conditions
- although the relation couples different orders of the fields, even for interacting theories a polynomial solution can be achieved
- from the GW point of view: more careful investigations of the conditions for lattice SUSY is needed: compare with other symmetries; use the knowledge from ERG studies for interacting case; generalise the setup

