The curvature of the QCD phase transition line

<u>G. Endrődi</u>, Z. Fodor, S.D. Katz, K.K. Szabó Eötvös University, Budapest, Hungary

> Lattice 2008 Williamsburg, 18. July 2008.

Contents

- Introduction, motivation
- The role of the curvature
- Applied technique and the observables
- Results
- Summary and conclusions

Introduction, motivation

- Zero μ area is relevant for the early Universe high energy collisions
- Nature of QCD transition at zero μ is found to be a Crossover [Y. Aoki, G.Endrődi, Z. Fodor, S.D. Katz, Κ.Κ. Szabó]
- Different observables give different values for T_c namely, $T_c(\chi_{\bar{\psi}\psi}) \approx 151$ MeV, $T_c(\chi_s) \approx 175$ MeV [Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabó]

The role of the curvature

- Explore the $\mu \neq 0$ region of the phase diagram
- At $\mu \neq 0$ the fermion determinant is complex \rightarrow importance sampling not possible
- Use Taylor-expansion in μ first term vanishes second term given by the curvature (κ)
- Aims:

determine the curvature for different observables $\chi_{\bar\psi\psi},\,\bar\psi\psi;$ and for $L,\,\chi_s$

• Comparison: no continuum limit results; the curvature is in the range of $\kappa = 0.003...0.01$

[Bielefeld-Swansea; Philipsen, de Forcrand; D'Elia, Lombardo; Fodor, Katz]

Scenarios

- Does the crossover region shrink or expand?
- The curvature can affect the existence of the critical endpoint
- Estimation: if $\mu_{crit} = 360 \text{ MeV} \rightarrow \Delta \kappa \approx 0.02$
- $\mu \equiv \mu_B$

Definition of κ

- Equation of transition line is $T_c(\mu) = T_c \left(1 \kappa \frac{\mu^2}{T_c^2}\right)$ $\rightarrow \kappa = -T_c \left. \frac{\mathrm{d}T_c(\mu)}{\mathrm{d}\mu^2} \right|_{\mu=0}$
- Let's assume we define T_c as $\mathcal{O} = 0.5$ (e.g. $\mathcal{O} = \chi_s/T^2$)
- For $\mathcal{O}(T,\mu^2)$: $d\mathcal{O} = \frac{\partial \mathcal{O}}{\partial T} \cdot dT + \frac{\partial \mathcal{O}}{\partial \mu^2} \cdot d\mu^2$

• For $\frac{\partial \mathcal{O}}{\partial \mu^2}$ we need to measure new operators

Technique

• Consider
$$\mathcal{Z} = \int \mathcal{D}U e^{-S_g(U)} \det M^{N_f/4}$$

•
$$\frac{\partial \log \mathcal{Z}}{\partial \mu_{u,d}} = \langle n_{u,d} \rangle$$
; $\frac{\partial^2 \log \mathcal{Z}}{\partial \mu_{u,d}^2} = \langle \chi_{u,d} \rangle$, where $(' \equiv \frac{\partial}{\partial \mu_{u,d}})$
 $n_{u,d} = \frac{N_f}{4} \operatorname{Tr} \left(M^{-1} M' \right)$ and
 $\chi_{u,d} = n_{u,d}^2 + \frac{N_f}{4} \operatorname{Tr} \left(M^{-1} M'' - M^{-1} M' M^{-1} M' \right)$

• Observables $\mathcal O$ that don't depend on $\mu_{u,d}$ (L, χ_s):

$$\frac{\partial \langle \mathcal{O} \rangle}{\partial (\mu_{u,d}^2)} = \frac{1}{2} \frac{\partial^2 \langle \mathcal{O} \rangle}{\partial \mu_{u,d}^2} = \langle \mathcal{O} \chi_{u,d} \rangle - \langle \mathcal{O} \rangle \langle \chi_{u,d} \rangle$$

• Observables ${\cal O}$ that depend on $\mu_{u,d}$ $(ar\psi\psi,\,\chi_{ar\psi\psi})$:

$$\frac{\partial \langle \mathcal{O} \rangle}{\partial (\mu_{u,d}^2)} = \frac{1}{2} \frac{\partial^2 \langle \mathcal{O} \rangle}{\partial \mu_{u,d}^2} = \langle \mathcal{O} \chi_{u,d} \rangle - \langle \mathcal{O} \rangle \langle \chi_{u,d} \rangle + \langle 2 \mathcal{O}' n_{u,d} + \mathcal{O}'' \rangle$$

Simulation setup

- Symanzik improved gauge and stout-link improved staggered fermionic lattice action
- Physical masses for $m_{u,d}$ and for m_s
- LCP determined by fixing m_K/f_K and m_K/m_π
- Scale set by f_K
- Lattice spacings used: $N_T = 4, 6, 8, 10$
- with aspect ratios $N_S/N_T =$ 4 and 3
- Measurements carried out with 80 random vectors (balance between measurements and configuration production)

Observables I.

- Polyakov loop $L = \frac{1}{N_S^3} \sum_{\times} \operatorname{Tr} \prod_{t=0}^{N_T-1} U_4(x,t)$ renormalization: $L_r = L \exp(V(r_0)/2T)$
- Strange susceptibility $\chi_s = \frac{T}{V} \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_s^2}$ no renormalization necessary
- Chiral condensate $\bar{\psi}\psi = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m}$

renormalization: $\bar{\psi}\psi_r = (\bar{\psi}\psi - \bar{\psi}\psi(T=0)) \cdot m \cdot \frac{1}{m_\pi^4}$

• Chiral susceptibility $\chi_{\bar{\psi}\psi} = \frac{T}{V} \frac{\partial^2 \log \mathcal{Z}}{\partial m^2}$

renormalization: $\chi_{\bar{\psi}\psi r} = (\chi_{\bar{\psi}\psi} - \chi_{\bar{\psi}\psi}(T=0)) \cdot m^2 \cdot \frac{1}{T^4}$

Observables II.

Results I.

• Independent measurements at different β values

Results II.

• Continuum extrapolated results are preliminary

• Notice large errors \rightarrow for $N_T = 6, 8, 10$ more statistics is needed $\kappa(\chi_{\bar{\psi}\psi r}) = -0.0018(34), \ \kappa(\bar{\psi}\psi_r) = 0.0034(40)$ $\kappa(L_r) = -0.0095(93), \ \kappa(\chi_s/T^2) = 0.0013(51)$

Summary

- Although $\kappa(\bar{\psi}\psi_r) < \kappa(\chi_s/T^2)$ for every N_T , they become consistent in the continuum limit
- For that reason we cannot make an estimate about the location of the critical endpoint
- We need to increase statistics to achieve a reliable continuum limit