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INTRODUCTION
QCD AT NONZERO BARYON DENSITY

QCD at finite µ: complex fermion determinant

det M(µ) = [det M(−µ)]∗

partition function: Z =

∫

DU e−SB(U) det M

importance sampling not possible

reweighting

Taylor expansion

analytical continuation

density of states

canonical ensemble

...

here: stochastic quantization
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

alternative nonperturbative numerical approach

weight = equilibrium distribution of stochastic process

think: Brownian motion

particle in a fluid: friction (γ) and kicks (η)
Langevin equation:

d

dt
~v(t) = −γ~v(t) + ~η(t) 〈ηi(t)ηj(t

′)〉 = 2kTγδijδ(t − t′)

equilibrium solution/noise average:

lim
t→∞

1

2
〈vi(t)vj(t)〉 =

1

2
δijkT
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

apply to field theory (Parisi and Wu ’81)

∂φ(x, θ)

∂θ
= − δS[φ]

δφ(x, θ)
+ η(x, θ)

Gaussian noise

〈η(x, θ)〉 = 0 〈η(x, θ)η(x′, θ′)〉 = 2δ(x − x′)δ(θ − θ′)

corresponding Fokker-Planck equation

∂P [φ, θ]

∂θ
=

∫

ddx
δ

δφ(x, θ)

(

δ

δφ(x, θ)
+

δS[φ]

δφ(x, θ)

)

P [φ, θ]

stationary solution: P [φ] ∼ e−S
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

real action: formal proofs of convergence
(but can also use importance sampling)

complex action: no formal proofs available
(but other methods in serious trouble)

force δS/δφ complex: complex Langevin dynamics

example: real scalar field φ → Re φ + iIm φ

∂Re φ

∂θ
= −Re

δS

δφ
+ η

∂Im φ

∂θ
= −Im

δS

δφ

observables: analytic extension

〈O(φ)〉 → 〈O(Re φ + iIm φ)〉
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(PRE)HISTORY
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application to finite µ:
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Karsch and Wyld ’85
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FINITE CHEMICAL POTENTIAL
WHAT WE DID

three models of the form

Z =

∫

DUe−SB det M det M(µ) = [det M(−µ)]∗

QCD in hopping expansion

SU(3) one link model

U(1) one link model

observables:

(conjugate) Polyakov loops

density

phase of determinant
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THREE MODELS
I: QCD IN HOPPING EXPANSION

fermion matrix:

M = 1 − κ

3
∑

i=1

space − κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)

hopping expansion:

det M ≈ det
[

1 − κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)]

=
∏

x

det
(

1 + heµ/TPx

)2
det

(

1 + he−µ/TP−1
x

)2

with h = (2κ)Nτ and the (conjugate) Polyakov loops P(−1)
x

full gauge dynamics included
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THREE MODELS
II: SU(3) ONE LINK MODEL

Z =

∫

dUe−SB det M link U ∈ SU(3)

SB = −β

6

(

Tr U + Tr U−1
)

determinant:

det M = det
[

1 + κ
(

eµσ+U + e−µσ−U−1
)]

= det (1 + κeµU) det
(

1 + κe−µU−1
)

with σ± = (11 ± σ3)/2

det in colour space remaining

exact evaluation by integrating over the Haar measure
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THREE MODELS
III: U(1) ONE LINK MODEL

U(1) model: link U = eix with −π < x ≤ π

SB = −β

2

(

U + U−1
)

= −β cos x

determinant:

det M = 1 +
1

2
κ

[

eµU + e−µU−1
]

= 1 + κ cos(x − iµ)

partition function:

Z =

∫ π

−π

dx

2π
eβ cos x [1 + κ cos(x − iµ)]

all observables can be computed analytically
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COMPLEX LANGEVIN DYNAMICS

Langevin update:

U(θ + ε) = R(θ) U(θ) R = exp
[

iλa

(

εKa +
√

εηa

)]

drift term

Ka = −DaSeff Seff = SB+SF SF = − ln det M

noise
〈ηa〉 = 0 〈ηaηb〉 = 2δab

real action: ⇒ K† = K ⇔ U ∈ SU(3)

complex action: ⇒ K† 6= K ⇔ U ∈ SL(3, C)
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(CONJUGATE) POLYAKOV LOOPS

U(1) ONE LINK MODEL
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data points: complex Langevin
stepsize ε = 5 × 10−5, 5 × 107 time steps

lines: exact results

excellent agreement for all µ
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(CONJUGATE) POLYAKOV LOOPS

SU(3) ONE LINK MODEL
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(CONJUGATE) POLYAKOV LOOPS

SU(3) ONE LINK MODEL

scatter plot of P during Langevin evolution
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(CONJUGATE) POLYAKOV LOOPS

QCD IN HOPPING EXPANSION

first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3
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DENSITY
U(1) ONE LINK MODEL SU(3) ONE LINK MODEL
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excellent agreement for all µ
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DENSITY
QCD IN HOPPING EXPANSION
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low-density phase ⇒ high-density phase
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REAL VS. COMPLEX LANGEVIN
U(1) ONE LINK MODEL
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µ2 < 0: imaginary chemical potential ⇔ real action
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SIGN PROBLEM
U(1) ONE LINK MODEL

det M(µ) = [det M(−µ)]∗ = | det M(µ)|eiφ

average phase factor: 〈e2iφ〉 =

〈

det M(µ)

det M(−µ)

〉
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SIGN PROBLEM
U(1) ONE LINK MODEL

det M(µ) = [det M(−µ)]∗ = | det M(µ)|eiφ

Re e
2iφ

scatter plot of e2iφ during Langevin evolution
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SIGN PROBLEM
U(1) ONE LINK MODEL
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SIGN PROBLEM
QCD IN HOPPING EXPANSION

average phase factor: 〈e2iφ〉 =

〈

det M(µ)

det M(−µ)

〉

scatter plot of e2iφ during Langevin evolution
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SU(3) → SL(3,C)
QCD IN HOPPING EXPANSION

1

3
Tr U †U ≥ 1 = 1 if U ∈ SU(3)
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WHY DOES IT (APPARENTLY) WORK?

one link models: excellent

precise agreement with exact results

sign problem not a problem

well defined distributions

field theory encouraging

why?

classical flow

Fokker-Planck equation
in U(1) model
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CLASSICAL FLOW
U(1) ONE LINK MODEL

link U = eix complexification x → z = x + iy

Langevin dynamics: ẋ = Kx + η ẏ = Ky

classical forces: Kx = −Re
∂S

∂x

∣

∣

∣

x→z
Ky = −Im

∂S

∂x

∣

∣

∣

x→z

classical fixed points: Kx = Ky = 0

one stable fixed point at x = 0, y = ys(µ)

unstable fixed points at x = π, y = yu(µ)

structure is independent of µ!
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CLASSICAL FLOW
U(1) ONE LINK MODEL

flow diagrams and Langevin evolution
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µ = 0: dynamics only in x direction

µ > 0: spread in y direction
Lattice08, July 2008 – p.15



COMPLEX FOKKER-PLANCK EQUATION
U(1) ONE LINK MODEL

complex Fokker-Planck equation:

∂P (x, θ)

∂θ
=

∂

∂x

(

∂

∂x
+

∂S

∂x

)

P (x, θ)

all eigenvalues are real ⇔ det M(µ) = [det M(−µ)]∗
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open question: real Fokker-Planck equation for ρ(x, y, θ)
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SUMMARY

finite chemical potential: complex action
stochastic quantization and complex Langevin dynamics

one link models: excellent

field theory: encouraging

detailed study of

(sign problem and) phase of the determinant

why? partly understood in simple models

classical flow qualitatively unchanged

complex FP equation: eigenvalues ≥ 0

to do: more field theory
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