Hunting for the strangeness content of the nucleon

Sara Collins, Gunnar Bali, Andreas Schäfer

Universität Regensburg

Outline	Introduction	Calculation of Δq	Disconnected diagrammes	Results	Outlook

- Introduction
- How to calculate Δq
- Disconnected contributions: stochastic methods
- Results
- Outlook

Work in progress, results preliminary.

Outline	Introduction	Calculation of Δq	Disconnected diagrammes	Results	Outlook

Contribution of the quark spin to the spin of the nucleon.

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

Along with the quark angular momentum, L_q and gluon total angular momentum ΔG :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G$$

Extraction of $\Delta\Sigma$ from experiment:

- measure the spin structure function $g_1(x, Q^2)$ for neutron, proton.
- extract $\Delta q(x, Q^2)$ from g_1 's and integrate over x:

$$\Delta q(Q^2) = \int_0^1 dx \, \Delta q(x, Q^2).$$

• Assumptions required to extrapolate data to $x < 10^{-3}$.

Hermes 2006 (COMPASS very similar): (at $Q^2 = 5 \,\mathrm{GeV}^2$)

 $\Delta u = 0.842(4)(8)(9)$ $\Delta d = -0.427(4)(8)(9)$ $\Delta s = -0.085(13)(8)(9)$

Errors are (theoretical)(experimental)(evolution). However,

- data only for x > 0.004,
- restrict integration to range where \exists data $\Rightarrow \Delta s \approx 0$.

\cap		41	1.00	
U	u	u		

Global fit to experimental data

D de Florian, R Sassot, M Stratmann, W Vogelsang 2008

OutlineIntroductionCalculation of Δq Disconnected diagrammesResultsOutlookLeading twist:

$$\langle N, p, s | \bar{q} \gamma_{\mu} \gamma_{5} q | N, p, s \rangle = 2 M_{N} s_{\mu} \frac{\Delta q}{2}$$

On the lattice extracted using

For $\Delta s \exists$ only the disconnected contribution.

 Outline
 Introduction
 Calculation of Δq Disconnected diagrammes
 Results
 Outlook

 Extract matrix element from ratio (at zero momentum)
 $R^{con}(t, t_f) = \frac{\langle \Gamma_{pol}^{\alpha\beta} C_{3pt}^{\beta\alpha}(t_0, t, t_f) \rangle}{\langle \Gamma_{unpol}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_0, t_f) \rangle}$ (t_0, t_0, t_0) (t_0, t_0, t_0)

$$R^{dis}(t, t_f) = -\frac{\langle \Gamma_{\text{pol}}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_0, t_f) \sum_{\mathbf{x}} \text{Tr}(\gamma_j \gamma_5 M^{-1}(\mathbf{x}, t; \mathbf{x}, t)) \rangle}{\langle \Gamma_{\text{unpol}}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_0, t_f) \rangle}$$

• polarized in the *j*-direction.

•
$$\Gamma_{\rm pol} = i \gamma_j \gamma_5 (1 + \gamma_4)/2$$
, $\Gamma_{\rm unpol} = (1 + \gamma_4)/2$.

- We smear C_{3pt} and C_{2pt} at source and sink.
- (Not yet) renormalised.

For $t_f \gg t \gg t_0$:

$$R^{con}(t,t_f)+R^{dis}(t,t_f)
ightarrow 2rac{\langle N,ec{0},s|(ar{q}\gamma_j\gamma_5 q)^{latt}|N,ec{0},s
angle}{2M_N}=\Delta q^{latt}$$

The disconnected contribution requires all-to-all propagators. \Rightarrow stochastic methods:

Generate a set of random noise vectors $|\eta_\ell
angle$, $\ell=1,\ldots,L$ where

$$\begin{split} \frac{1}{L}\sum_{\ell} |\eta_{\ell}\rangle\langle\eta_{\ell}| &= \overline{|\eta\rangle\langle\eta|}_{L} = \overline{|\eta\rangle\langle\eta|} = \mathbb{1} + \mathcal{O}(1/\sqrt{L})\,,\\ \overline{\langle\eta|} &= \mathcal{O}(1/\sqrt{L})\,. \end{split}$$

By solving

$$M|s_\ell
angle = |\eta_\ell
angle$$

for the $|s_\ell
angle$ one can construct an unbiased estimate:

$$E(M^{-1}) = \overline{|s\rangle\langle\eta|} \\ = M^{-1} + M^{-1} \underbrace{(\overline{|\eta\rangle\langle\eta|} - \mathbb{1})}_{\mathcal{O}(1/\sqrt{L})}$$

For tricks see also the posters of Christian Ehmann & Hagen.

Partitioning – We only set $|\eta_{\ell}\rangle \neq 0$ on one timeslice. This removes some of the (larger) off-diagonal noise elements $\overline{|\eta\rangle\langle\eta|} - \mathbb{1}$ and reduces the variance.

HPE – The first few terms of the hopping parameter expansion of $Tr(\Gamma M^{-1}) = Tr[\Gamma(1 - \kappa D)^{-1}]$ vanish identically but still contribute to the noise. For the Wilson action, $Tr(\Gamma M^{-1}) = Tr(\Gamma \kappa^n D^n M^{-1})$, n = 4, 8, depending on Γ , where estimating the latter yields smaller errors.

Eigenmodes – Calculate the N_{ev} lowest eigenvalues and eigenvectors of $Q = \gamma_5 M$, $Q^{-1} = Q_{\perp}^{-1} + \sum_{i=1}^{N_{ev}} |u_i\rangle q_i^{-1} \langle u_i|$, and stochastically estimate the complement Q_{\perp}^{-1} (with deflation included for free).

TSM – Obtain approximate solutions $|s_{n_t,\ell}\rangle$ after n_t solver iterations (before convergence), and estimate the difference stochastically to obtain an unbiased estimate of M^{-1} :

$$\mathrm{E}(M^{-1}) = \overline{|s_{n_t}\rangle\langle\eta|}_{L_1} + \overline{(|s\rangle - |s_{n_t}\rangle)\langle\eta|}_{L_2} \quad \text{with} \quad L_2 \ll L_1 \,.$$

Outlook

Reduction of the stochastic error at fixed cost

Results for $Tr(\Gamma M^{-1})$ on 1 configuration:

- Significant gain for all Γ s.
- Using different combinations of methods allows one to obtain similar gains at different quark masses.

Outline	Introduction	Calculation of Δq	Disconnected diagrammes	Results	Outlook
Lattice	details				

Configurations: provided by the Wuppertal group

- $n_f \approx 2 + 1$ configurations using Symanzik improved gauge action and stout-link improved **staggered** fermion action
- $a \approx (1.55 \text{ GeV})^{-1} \approx 0.13 \text{ fm}, L \approx 2 \text{ fm}, m_s \approx \text{physical}, m_{u,d} \approx 8 \times \text{physical}, 980 \text{ configs}.$

Propagators:

- Wilson action, $\kappa = 0.166$ ($M_{PS} \approx 600$ MeV), $\kappa = 0.1675$ ($M_{PS} \approx 450$ MeV) and $\kappa = 0.1684$ ($M_{PS} \approx 300$ MeV).
- Conjugate gradient algorithm with even-odd preconditioning [chroma] for stochastic propagators (with deflation at $\kappa = 0.1684$), BiCGStab for nonstochastic valence.

Outline	Introduction	Calculation of Δq	Disconnected diagrammes	Results	Outlook
Smear	ring				
onneur					

Wuppertal smearing with APE smeared transporters.

 $M_{PS} \approx 600$ MeV, i.e. $m \approx m_s$, 324 configurations: nucleon effective mass (smeared-smeared).

To avoid excited states we choose $t_0 = 0$ and $t = 3a \approx 0.38$ fm. Better smearing is possible!

Gunnar Bali (Regensburg)

Outlook

Disconnected loop: $Tr(\gamma_3\gamma_5M^{-1})$

- $\kappa_{loop} = 0.166 \approx \kappa_s$
- Partitioning: t = 3a
- TSM: $n_t = 90$, $L_1 \approx 2000$, $n_c \approx 480$, $L_2 \approx 100$.
- HPE: (κØ)⁸

- $\kappa_{loop} = \kappa_{proton} = 0.166 \approx \kappa_s$: Δs for an *sss* proton.
- 324 configurations, $a \approx 0.13$ fm.
- The error is dominated by that of the two point function!

Variation of Δq^{dis} with the quark mass

Fix κ_N , i.e. the proton mass, vary κ_{loop} : $M_{PS,loop} \approx 300, 450, 600$ MeV.

- points with $\kappa_N = 0.166 \approx \kappa_s$, **324 configs**.
- points with $\kappa_N = 0.1675$ ($M_{PS} \approx 450$ MeV), **167 configs**.

Gunnar Bali (Regensburg)

Nucleon Δs

Lowest moment of the disconnected scalar quark density

Outline	Introduction	Calculation of Δq	Disconnected diagrammes	Results	Outlook
<u> </u>					
Outloc	ok '				

Work in progress ...

- Accurate calculations of isosinglet contributions to hadronic structure observables are now possible.
- Our results suggest a very small Δs in the proton. Higher twist? Further analysis:
 - Other disconnected contributions, e.g. to $\langle x \rangle$, G_M , G_E .

This was just a feasibility study on $16^3 \times 32$ volumes, using tiny computing resources (mostly desktop PCs).

Next step:

• Calculation with QCDSF on large $n_F = 2$ Clover and $n_F = 2 + 1$ SLiNC configurations.