

The LQCD Scale

- The lattice scale is implicitly set by choice of parameters
 - but not explicitly known
- Precise knowledge required to make useful, physical predictions
 - uncertainty in r₁ physical value dominates errors in e.g.
 - f_{K} , $f_{\pi} \& f_{K} / f_{\pi}^{[1]}$
 - m_c^[2]
- Use the Upsilon because spectrum is known to be insensitive to heavy quark mass

The NRQCD Action

- due to high b mass, the quark velocities in the Upsilon meson $v^2 << c^2$
 - NRQCD exploits this property

$$G(\mathbf{x}, t+a) = \left(1 - \frac{aH_0}{2n}\right)^n \left(1 - \frac{a\delta H}{2}\right) U_{\mu}^{\dagger}(\mathbf{x}, t) \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right)^n G(\mathbf{x}, t)$$

$$H_{0} = \frac{-\Delta^{(2)}}{2M}$$

$$\delta H = -\frac{(\Delta^{(2)})^{2}}{8M^{3}} + \frac{ig}{8M^{2}} (\boldsymbol{\Delta}^{(\pm)} \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \boldsymbol{\Delta}^{(\pm)})$$

$$- \frac{g}{8M^{2}} \boldsymbol{\sigma} \cdot (\boldsymbol{\Delta}^{(\pm)} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \boldsymbol{\Delta}^{(\pm)})$$

$$- \frac{g}{2M} \boldsymbol{\sigma} \cdot \tilde{\mathbf{B}} + \frac{a^{2} \Delta^{(4)}}{24M} - \frac{a(\Delta^{(2)})^{2}}{16nM^{2}}$$

Using the Upsilon Spectrum

- Scale can be set by defining $(2S-1S)_{latt} = a(2S-1S)_{expr}$
- Desire ~1% precision in (2S-1S)_{latt}
 - cf A.Gray et al, errors ~2%
- We use Random-Wall (or "Stochastic") sources and source smearing
 - computationally cheap way of increasing lattice usage
 - smearing used to improve signal for 2S state (unchanged from A. Gray et al):

$$(2r_0 - r)e^{(-r/2r_0)}$$

Random Wall

- Assign every spatial point at start time a complex phase
- Smearing function applied repeatedly: centred on every starting spatial point, and multiplied by corresponding phase
- This pairs the quark centred on a point with the anti-quark on the same point
 - contributions from other combinations cancel on average
- Random wall gives an average propagator over all spatial origins for a given temporal origin

Lattice Ensembles

- Ensembles generated by MILC
- 5 used so far
 - plan to use "fine" ensemble between coarse & super-fine

Lattice	Size	n _f	β	am _ı , am _s	U _{OL}	aM $^{\scriptscriptstyle 0}_{\mathfrak{b}}$	n	Configs	Origins
Very Coarse	16³ x 48	2+1	6.572	0.0097, 0.0484	0.8218	3.40	4	631	24
	16³ x 48	2+1	6.586	0.0194, 0.0484	0.8225	3.40	4	631	24
Coarse	20 ³ x 64	2+1	6.760	0.010, 0.050	0.8359	2.80	4	595	32
	24 ³ x 64	2+1	6.760	0.005, 0.050	0.8362	2.80	4	202	32
Superfine	48 ³ x 144	2+1	7.470	0.0036, 0.018	0.8695822	1.34	4	132	8

- Bin over starting temporal origins
 - superfine also binned on pairs of adjacent configurations

Fitting

- Fit using Bayesian method
- Fits should be stable once sufficient exponentials are included in the fit

Results

• PDG: $\Upsilon(2S-1S) = 0.56296(40)$ GeV

Ensemble		$E_{\scriptscriptstyle{0}}$	E ₁ -E ₀	a ⁻¹
V.Coarse	0097/0484	0.28781(8)	0.4261(40)	1.321(12)
	0194/0484	0.28812(8)	0.4240(42)	1.328(13)
Coarse	010/050	0.292574(59)	0.3443(33)	1.635(16)
	005/050	0.293252(66)	0.3453(36)	1.630(17)
Superfine	0036/018	0.248477(25)	0.1734(34)	3.247(64)

- Random wall gave very accurate ground states
- Excited states do not seem improved by wall, only by our improved statistics

Determination of r₁

- r_1 is defined as the value of r at which $r^2F(r)=1.00$, where F(r) is the heavy quark potential gradient
- value of r₁ in lattice units calculated by MILC and converted to physical units via our determination of the Upsilon 2S-1S splitting

Determination of r₁

Y Leptonic Width

 Calculate ratios of leptonic widths to leading order using amplitudes

$$\frac{\Gamma_{ee}(2S) M_{Y(2S)}^{2}}{\Gamma_{ee}(1S) M_{Y(1S)}^{2}} = \frac{|\Psi_{2}(0)|^{2}}{|\Psi_{1}(0)|^{2}}$$
where: $\Psi_{n}(0) = a(loc, n)$

Hyperfine Splitting

Splitting between the 1³S₁ and 1¹S₀ energy levels

Errors on theoretical points are only statistical/fitting
Radiative and discretisation errors are expected to be larger

The 'Foo' Particle: Checking Systematics

- Imaginary particle contrived to allow us to investigate systematics
- Spin structure removed, quark mass decreased
- Comparison between different lattice spacings will highlight discretisation errors as other more complicated effects are suppressed
- We are also able to use perturbation theory to tune coefficients in the action to improve the test
- Work in progress

Conclusion

- Y useful for making precise determinations of certain lattice quantities
- Of particular importance is the lattice scale
 - calculated to the ~1% level
- Random wall sources extremely useful for E₀, but less so for higher states
 - relied on higher statistics instead
- Also able to extract other interesting quantities from our data