Matching the Bare and $\overline{M S}$ Charm Quark Mass using Weak Coupling Simulations

Ian Allison ${ }^{1}$ for the HPQCD collaboration
${ }^{1}$ TR triumf 4004 Wesbrook Mall, Vancouver, BC

Outline

- m_{c} and HIS-Quarks
- High β
- Calculating C_{2}
- ASQTAD
- HISQ
- Conclusions, m_{c} and Outlook

m_{c}

- Quark Masses $+\alpha_{s}+\mathrm{SU}(3)=\mathrm{QCD}$
- Quark masses needed to evaluate some important Matrix Elements
- Confinement complicates extraction must look at hadronic quantities \rightarrow Lattice
- Extraction for heavy quarks (m_{c} in particular) has been difficult, we want to address this...

Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics.

E. Follana, ${ }^{1, *}$ Q. Mason, ${ }^{2}$ C. Davies, ${ }^{1}$ K. Hornbostel, ${ }^{3}$ G. P. Lepage, ${ }^{4}$ J. Shigemitsu, ${ }^{5}$ H. Trottier, ${ }^{6}$ and K. Wong ${ }^{1}$ (HPQCD, UKQCD)

$$
\mathcal{F}_{\mu} \equiv \prod_{\rho \neq \mu}\left(1+\frac{a^{2} \delta_{\rho}^{(2)}}{4}\right)-\sum_{\rho \neq \mu} \frac{a^{2}\left(\delta_{\rho}\right)^{2}}{4} \quad \mathcal{F}_{\mu}^{H I S Q}=\mathcal{F}_{\mu} \mathcal{U} \mathcal{F}_{\mu}
$$

AsqTad: Remove all tree level $\mathcal{O}\left(a^{2}\right)$ errors

- Remaining $\alpha_{S} a^{2}$ errors still too large even for typical $a m_{c}$

HISQ: Taste changing errors further suppressed by factor of 3 or so + dispersion relation corrected by Naik coeff.

$$
\begin{array}{cc}
\psi-\eta_{c}=111(5) \mathrm{MeV} & m_{c}\left(m_{c}\right)=1.269(9) \mathrm{GeV} \\
f_{D}=207(4) \mathrm{MeV} & f_{D_{s}}=241(3) \mathrm{MeV}
\end{array}
$$

Extracting a physical m_{c}

First calculate a lattice m_{c}

$$
m_{c}=\frac{m_{c} a}{m_{\eta_{c}} a} \times m_{\eta_{c}}^{\text {expt }}-4 \text { MILC ensembles }
$$

Then match to the $\overline{M S}$ scheme using Pert. Th.

- We want two loop improvement for the matching, this is a lot of work, complicated discretisations \Rightarrow complicated P.T.
- We break the problem into gluonic and fermionic pieces, doing $c_{2, q}$ "by hand"

$$
M_{\text {pole }}=m_{q}\left(1+c_{1}\left(m_{q} a\right) \alpha_{V}+\left(c_{2, g}\left(m_{q} a\right)+c_{2, q}\left(m_{q} a\right)\right) \alpha_{V}^{2}\right)
$$

$$
\begin{gathered}
a b a \\
0 b a \\
a \& a \\
a-\infty=0
\end{gathered}
$$

$\rightarrow N+m$
$\rightarrow+\infty+\infty$

High β

- We control the strength of the coupling in simulation
- High Beta $=$ small coupling \Rightarrow large π / a so we can probe the perturbative regime in simulation!
- Successfully applied extracting α_{s} from Wilson loops, e.g. the 1×2 wilson loop has expansion

$$
-\frac{1}{6} \log W_{1 \times 2}=\sum_{n}^{N} c_{n} \alpha_{V}^{n}\left(q_{1 \times 2}^{*}\right)
$$

	c_{1}	c_{2}	c_{3}
Diag.	$1.2039(0)$	$-1.437(1)$	$-0.11(9)$
MC	$1.2039(4)$	$-1.480(28)$	$-0.28(45)$
$\mathrm{MC}+$	--	$1.480(10)$	$-0.28(25)$
$\mathrm{MC}++$	--	--	$-0.17(10)$

- Works excellently as a complement to diagrammatic P.T. \longrightarrow constrain as much as possible diagrammatically then use high beta for the rest.

The Caveats...

- Not quite as simple as just running simulation code with beta at large values
- Have to worry about the infra-red:
- Zero Modes
- Vacuum tunneling, need the correct vacuum
- Twisted boundary conditions allow us to avoid zero mode and prevent tunneling between the various Z_{3} vacuua

Matching m_{c} at high- β

- Evaluate HISQ quark propagators in Coulomb + Axial Gauge at different beta
- Compute an expansion in the strong coupling and fit the coefficients, $\mathrm{c}_{1}, \mathrm{c}_{2} \alpha_{V}\left(q^{*}\right)$
- Constrained Curve Fitting is crucial, we use the free field result a constraint
- We can calculate q^{*} for each input mass but we need $\alpha_{V}\left(q^{*}\right)$...

Use the three loop expansion of $\log \left(W_{11}\right)$

$$
-\log W_{11}=3.068393 \alpha_{V}\left(1-0.775 \alpha_{V}-0.768 \alpha_{V}^{2}\right)
$$

This gives us $\alpha_{V}\left(q_{1 \times 1}^{*}\right)$ which we use to solve
$\alpha(q)=\frac{4 \pi}{\beta_{0} \tilde{q}}\left[1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log \tilde{q}}{\tilde{q}}+\frac{\beta_{1}^{2}}{\beta_{0}^{4} \tilde{q}^{2}}\left(\left(\tilde{q}-\frac{1}{2}\right)^{2}+\frac{\beta_{2}^{V} \beta_{0}}{\beta_{1}^{2}}-\frac{5}{4}\right)\right]$
This gives the scale Λ from $\tilde{q}=\log \left(q^{2} / \Lambda^{2}\right)$ and back substitution then gives us $\alpha_{V}\left(q_{m}^{*}\right)$

Start extracting c_{1} and c_{2}, c_{1} first...

- We can check the validity of high beta by comparing to diagrammatic P.T. for c_{1}

- To get c_{2}, constrain c_{1}, then take c_{2} infinite volume

$$
\begin{gathered}
c_{1}(L)=c_{1}-X_{1} \frac{1}{L}+\cdots \\
a m(L)=a m-X_{1} \frac{\alpha_{V}\left(q^{*}\right)}{L}+\cdots \\
c_{2}(L)=c_{2}\left(L_{\infty}\right)+\frac{1}{L}\left(X_{c_{2}, 1}+Y_{c_{2}, 1} \log \left(L^{2}\right)\right)+\frac{1}{L^{2}}\left(X_{c_{2}, 2}+Y_{c_{2}, 2} \log \left(L^{2}\right)\right)+\cdots \\
Y_{c_{2}, 1}=\frac{11}{4 \pi} X_{c_{1}, 1}
\end{gathered}
$$

- $X_{c_{1}, 1}$ comes from the c_{1} infinite volume fits and is vital in constraining the fit form
- For AsqTad, gluonic c_{2} is already know

- Agrees with diagrammatic P.T. again, but the logs are needed in the fits

c2 Infinite Volume - HISQ

- Simple linear extrapolation would give a different answer
- Same analysis for AsqTad showed how important this is

Our High- β result for $\mathrm{c}_{2} \ldots$

mass	0.30	0.43	0.50	0.66	0.85
$c_{2}(L=\infty)$	$0.29(11)$	$0.52(11)$	$1.21(11)$	$0.13(12)$	$-0.44(14)$

m_{C}

- We match $\mathrm{m}_{\text {latt }}$ and $m_{\overline{M S}}$ converting $\alpha_{\text {latt }}$ and $\alpha_{\overline{M S}}$ to α_{V}

$$
\begin{gathered}
m_{\overline{M S}}(\mu)=Z_{m} m_{\text {latt }}=\left(1+Z_{1} \alpha_{V}\left(a q^{*}\right)+Z_{2} \alpha_{V}^{2}\left(a q^{*}\right)+Z_{3} \alpha_{V}^{3}\left(a q^{*}\right)+\cdots\right) m_{\text {latt }} \\
Z_{2}=Z_{22} \bar{l}^{2}+Z_{21} \bar{l}+Z_{20} \quad: \quad \bar{l}=\log (a \mu)
\end{gathered}
$$

- c_{2} feeds into the the coefficients Z_{xx} as $\mathrm{A}_{\mathrm{x} 0}(\mathrm{am})$
- Match to $\overline{M S}$ at $\mu=3 \mathrm{GeV}$, which requires calculating a q^{*} for α_{V}

Errors: (fitting)(scale setting)(perturbative matching)

Conclusions

- High beta works. Especially in combination with traditional P.T.
- We have a second consistent $\mathrm{m}_{\mathrm{c} . . .}$

This Work:

$$
m^{\overline{M S}}(3 \mathrm{GeV})=0.983(25) \mathrm{GeV}
$$

Current-Current: $\quad m^{\overline{M S}}(3 \mathrm{GeV})=0.988(10) \mathrm{GeV}$

- The same formulation for s and c make m_{c} / m_{s} an obvious target for investigation next

