

Matching the Bare and MS Charm Quark Mass using Weak Coupling Simulations

 $Ian \ Allison^1$ for the HPQCD collaboration

TRIUMF 4004 Wesbrook Mall, Vancouver, BC

Outline

- m_c and HIS-Quarks
- High eta
- Calculating c₂
 - ASQTAD
 - HISQ
- Conclusions, m_c and Outlook

$\mathcal{m}_{\mathcal{C}}$

- Quark Masses + α_s + SU(3) = QCD
- Quark masses needed to evaluate some important Matrix Elements
- Confinement complicates extraction must look at hadronic quantities — Lattice
- Extraction for heavy quarks (m_c in particular) has been difficult, we want to address this...

Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics.

E. Follana,^{1, *} Q. Mason,² C. Davies,¹ K. Hornbostel,³ G. P. Lepage,⁴ J. Shigemitsu,⁵ H. Trottier,⁶ and K. Wong¹ (HPQCD, UKQCD)

$$\mathcal{F}_{\mu} \equiv \prod_{\rho \neq \mu} \left(1 + \frac{a^2 \delta_{\rho}^{(2)}}{4} \right) - \sum_{\rho \neq \mu} \frac{a^2 (\delta_{\rho})^2}{4}$$

 $\mathcal{F}^{HISQ}_{\mu} = \mathcal{F}_{\mu} \mathcal{U} \mathcal{F}_{\mu}$

AsqTad: Remove all tree level $\mathcal{O}(a^2)$ errors

 $\zeta \pi/a \mathbf{O}$

• Remaining $\alpha_S a^2$ errors still too large even for typical am_c

HISQ: Taste changing errors further suppressed by factor of 3 or so + dispersion relation corrected by Naik coeff.

$$\psi - \eta_c = 111(5) \text{ MeV}$$
 $m_c(m_c) = 1.269(9) \text{ GeV}$
 $f_D = 207(4) \text{ MeV}$ $f_{D_s} = 241(3) \text{ MeV}$

Extracting a physical m_c

First calculate a lattice m_c

 $m_c = \frac{m_c a}{m_{\eta_c} a} \times m_{\eta_c}^{expt}$ - 4 MILC ensembles Then match to the \overline{MS} scheme using Pert. Th.

- We want two loop improvement for the matching, this is a lot of work, complicated discretisations complicated P.T.
- We break the problem into gluonic and fermionic pieces, doing *C*_{2,*q*} "by hand"

 $M_{pole} = m_q \left(1 + c_1(m_q a) \alpha_V + (c_{2,g}(m_q a) + c_{2,q}(m_q a)) \alpha_V^2 \right)$

High B

- We control the strength of the coupling in simulation
- High Beta = small coupling → large π/a so we can
 probe the perturbative regime in simulation!
- Successfully applied extracting α_s from Wilson loops, e.g. the 1x2 wilson loop has expansion

$$-\frac{1}{6}\log W_{1\times 2} = \sum_{n}^{N} c_{n} \alpha_{V}^{n}(q_{1\times 2}^{*})$$

$$\frac{c_{1}}{1.2039(0)} \frac{c_{2}}{-1.437(1)} \frac{c_{3}}{-0.11(9)}$$

$$\frac{MC}{MC} = 1.2039(4) -1.480(28) -0.28(45)$$

$$\frac{MC+}{MC+} -- 1.480(10) -0.28(25)$$

$$\frac{MC+}{MC+} -- -0.17(10)$$

 Works excellently as a complement to diagrammatic P.T. — constrain as much as possible diagrammatically then use high beta for the rest.

The Caveats...

- Not quite as simple as just running simulation code with beta at large values
- Have to worry about the infra-red:
 - Zero Modes
 - Vacuum tunneling, need the correct vacuum
- Twisted boundary conditions allow us to avoid zero mode and prevent tunneling between the various Z₃ vacuua

Matching m_c at high- β

- Evaluate HISQ quark propagators in Coulomb + Axial Gauge at different beta
- Compute an expansion in the strong coupling and fit the coefficients, c_1 , $c_2 \alpha_V(q^*)$
 - Constrained Curve Fitting is *crucial*, we use the free field result a constraint
- We can calculate q^* for each input mass but we need $\alpha_V(q^*)$...

Use the three loop expansion of $\log (W_{11})$ $-\log W_{11} = 3.068393 \alpha_V (1 - 0.775 \alpha_V - 0.768 \alpha_V^2)$

This gives us $\alpha_V(q_{1\times 1}^*)$ which we use to solve

$$\alpha(q) = \frac{4\pi}{\beta_0 \tilde{q}} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log \tilde{q}}{\tilde{q}} + \frac{\beta_1^2}{\beta_0^4 \tilde{q}^2} \left(\left(\tilde{q} - \frac{1}{2} \right)^2 + \frac{\beta_2^V \beta_0}{\beta_1^2} - \frac{5}{4} \right) \right]$$

This gives the scale Λ from $\tilde{q} = \log(q^2/\Lambda^2)$ and back substitution then gives us $\alpha_V(q_m^*)$ Start extracting c₁ and c₂, c₁ first... • We can check the validity of high beta by comparing to diagrammatic P.T. for c₁

• To get c₂, constrain c₁, then take c₂ infinite volume

$$c_1(L) = c_1 - X_1 \frac{1}{L} + \cdots$$
$$am(L) = am - X_1 \frac{\alpha_V(q^*)}{L} + \cdots$$

$$c_{2}(L) = c_{2}(L_{\infty}) + \frac{1}{L}(X_{c_{2},1} + Y_{c_{2},1}\log(L^{2})) + \frac{1}{L^{2}}(X_{c_{2},2} + Y_{c_{2},2}\log(L^{2})) + \cdots$$
$$Y_{c_{2},1} = \frac{11}{4\pi}X_{c_{1},1}$$

• *X*_{*c*₁,1} comes from the c₁ infinite volume fits and is vital in constraining the fit form

• For AsqTad, gluonic c₂ is already know

 Agrees with diagrammatic P.T. again, but the logs are needed in the fits

c₂ Infinite Volume - HISQ

- Simple linear extrapolation would give a different answer
- Same analysis for AsqTad showed how important this is

Our High- β result for c_2 ...

mass0.300.430.500.660.85 $c_2(L = \infty)$ 0.29(11)0.52(11)1.21(11)0.13(12)-0.44(14)

m_c

• We match m_{latt} and $m_{\overline{MS}}$ converting α_{latt} and $\alpha_{\overline{MS}}$ to α_V

 $m_{\overline{MS}}(\mu) = Z_m m_{latt} = (1 + Z_1 \alpha_V(aq^*) + Z_2 \alpha_V^2(aq^*) + Z_3 \alpha_V^3(aq^*) + \cdots) m_{latt}$

$$Z_2 = Z_{22}\bar{l}^2 + Z_{21}\bar{l} + Z_{20} \qquad : \qquad \bar{l} = \log(a\mu)$$

• c₂ feeds into the the coefficients Z_{xx} as A_{X0}(am)

• Match to \overline{MS} at $\mu = 3$ GeV, which requires calculating a q^* for α_V

 $m_c^{\overline{MS}}(\mu = 3 \,\text{GeV}) = 0.9830(64)(49)(255) \,\text{GeV}$

Errors: (fitting)(scale setting)(perturbative matching)

Conclusions

- High beta works. Especially in combination with traditional P.T.
- We have a second consistent m_{c...}
- This Work: $m^{\overline{MS}}(3 \text{ GeV}) = 0.983(25) \text{ GeV}$ Current-Current: $m^{\overline{MS}}(3 \text{ GeV}) = 0.988(10) \text{ GeV}$
 - The same formulation for s and c make m_c/m_s an obvious target for investigation next