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Quark Masses + αs + SU(3) = QCD

Quark masses needed to evaluate some 
important Matrix Elements

Confinement complicates extraction  must look 
at hadronic quantities          Lattice

Extraction for heavy quarks (mc in particular) 
has been difficult, we want to address this...

mc



AsqTad: Remove all tree level            errors 
‣ Remaining           errors still too large even for typical 

HISQ: Taste changing errors further suppressed by factor of 
3 or so + dispersion relation corrected by Naik coeff.
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Highly Improved Staggered Quarks on the Lattice,
with Applications to Charm Physics.
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We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that
has greatly reduced one-loop taste-exchange errors, no tree-level order a2 errors, and no tree-level
order (am)4 errors to leading order in the quark’s velocity v/c. We demonstrate with simulations
that the resulting action has taste-exchange interactions that are at least 3–4 times smaller than the
widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing
ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more
than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression
of (am)4 errors also makes HISQ the most accurate discretization currently available for simulating
c quarks. We demonstrate this in a new analysis of the ψ − ηc mass splitting using the HISQ
action on lattices where amc = 0.43 and 0.66, with full-QCD gluon configurations (from MILC).
We obtain a result of 111(5) MeV which compares well with experiment. We discuss applications of
this formalism to D physics and present our first high-precision results for Ds mesons.

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

I. INTRODUCTION

The reintroduction of the staggered-quark discretiza-
tion in recent years has transformed lattice quantum
chromodynamics, making accurate calculations of a wide
variety of important nonperturbative quantities possible
for the first time in the history of the strong interac-
tion [1, 2, 3, 4, 5]. Staggered quarks were introduced
thirty years ago, but unusually large discretization errors,
proportional to a2 where a is the lattice spacing, made
them useless for accurate simulations. It was only in the
late 1990s that we discovered how to remove the lead-
ing errors, and the result was one of the most accurate
discretizations in use today. Staggered quarks are faster
to simulate than other discretizations, and as a result
have allowed us for the first time to incorporate (nearly)
realistic light-quark vacuum polarization into our simula-
tions. This makes high-precision simulations, with errors
of order a few percent, possible for the first time (see [1]
for a more detailed discussion). In this paper we present
a new discretization that is substantially more accurate
than the improved discretization currently in use. With
this new formalism accurate simulations will be possible
at even larger lattice spacings, further reducing simula-
tion costs.

The O(a2) discretization errors in staggered quarks
have two sources. One is the usual error associated with
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discretizing the derivatives in the quark action. The
correction for this error is standard and was known in
the 1980s [6]. The second source was missed for al-
most a decade. It results from an unusual property
of the staggered-quark discretization: the lattice quark
field creates four identical flavors or tastes of quark
rather than one. (We refer to these unphysical flavors
as “tastes” to avoid confusion with the usual quark fla-
vors, which are not identical since quarks of different fla-
vor have different masses.) The missing a2 error was as-
sociated with taste-exchange interactions, where taste is
transferred from one quark line to another in quark-quark
scattering. The generic correction for this type of error
involves adding four-quark operators to the discretized
action.

Taste is unphysical. Instead of one π+, for exam-
ple, one has sixteen. Taste is easily removed in simu-
lations provided that different tastes are exactly equiva-
lent, which they are, and provided there are no interac-
tions that mix hadrons of different taste. Taste-exchange
interactions, however, cause such mixing, and therefore it
is crucial that we understand such interactions and sup-
press them. Furthermore, past experience suggests that
the errors due to residual taste exchange are the largest
remaining a2 errors in current simulations.

The corrections to the lattice action that suppress taste
exchange were missed initially because four-quark op-
erators are not usually needed to correct discretization
errors in lowest order perturbation theory (that is, at
tree level). They were first discovered empirically from
simulations in which the gluon fields in the quark ac-

O(a2)

αSa2 amc

fD = 207(4)MeV fDs = 241(3)MeV

ψ − ηc = 111(5)MeV mc(mc) = 1.269(9)GeV



We want two loop improvement for the 
matching, this is a lot of work, complicated 
discretisations            complicated P.T.

We break the problem into gluonic and 
fermionic pieces, doing          “by hand”

Mpole = mq

(
1 + c1(mqa)αV + (c2,g(mqa) + c2,q(mqa))α2

V

)

Extracting a physical mc

First calculate a lattice mc

mc =
mca

mηca
×mexpt

ηc

Then match to the        scheme using Pert. Th.MS

c2,q

- 4 MILC ensembles
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We control the strength of the coupling in  simulation

High Beta = small coupling            large          so we can 
probe the perturbative regime in simulation!

Successfully applied extracting αs from Wilson loops, 
e.g. the 1x2 wilson loop has expansion

High     

π/a

β

c1 c2 c3

Diag. 1.2039(0) −1.437(1) −0.11(9)
MC 1.2039(4) −1.480(28) −0.28(45)

MC+ −− 1.480(10) −0.28(25)
MC++ −− −− −0.17(10)

Works excellently as a complement to diagrammatic 
P.T.           constrain as much as possible 
diagrammatically then use high beta for the rest.

−1
6

log W1×2 =
N∑

n

cnαn
V (q∗1×2)



Not quite as simple as just running simulation 
code with beta at large values

Have to worry about the infra-red:

‣ Zero Modes

‣ Vacuum tunneling, need the correct vacuum

Twisted boundary conditions allow us to 
avoid zero mode and prevent tunneling 
between the various Z3 vacuua

The Caveats...



Evaluate HISQ quark propagators in Coulomb + 
Axial Gauge at different beta

Compute an expansion in the strong coupling                
and fit the coefficients, c1, c2

‣ Constrained Curve Fitting is crucial, we use the 
free field result a constraint

We can calculate      for each input mass but we 
need               ...

Matching mc at high-β

q∗

αV (q∗)

αV (q∗)



− logW11 = 3.068393αV (1− 0.775αV − 0.768α2
V )

α(q) =
4π

β0q̃
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β2
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)]

αV (q∗m)

Use the three loop expansion of log (W11)

This gives us                which we use to solve     αV (q∗1×1)

This gives  the scale     from                              
and back substitution then gives us

Λ q̃ = log (q2/Λ2)

Start extracting c1 and c2, c1 first...



We can check the validity of high beta by 
comparing to diagrammatic P.T. for c1

c1(L) = c1(L∞) +
Xc1,1

L
+

Xc1,2

L2
+ · · ·
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To get c2, constrain c1, then take c2 infinite volume

           comes from the c1 infinite volume fits and 
is vital in constraining the fit form
Xc1,1

c1(L) = c1 −X1
1
L

+ · · ·

c2(L) = c2(L∞) +
1
L

(Xc2,1 + Yc2,1 log (L2)) +
1
L2

(Xc2,2 + Yc2,2 log (L2)) + · · ·

Yc2,1 =
11
4π

Xc1,1

am(L) = am−X1
αV (q∗)

L
+ · · ·



For AsqTad, gluonic c2 is already know
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Agrees with diagrammatic P.T. again, but the logs 
are needed in the fits



c2 Infinite Volume - HISQ

Simple linear 
extrapolation would 
give a different answer

Same analysis for 
AsqTad showed how 
important this is
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mass 0.30 0.43 0.50 0.66 0.85
c2(L =∞) 0.29(11) 0.52(11) 1.21(11) 0.13(12) −0.44(14)

Our High-β result for c2 ...



c2 feeds into the the coefficients Zxx as AX0(am)

Match  to        at     = 3 GeV, which requires 
calculating a       for

αlatt

Z2 = Z22l
2
+ Z21l + Z20 : l = log (aµ)

We match mlatt and           converting           
and            to 

MS

q∗ αV

µ

αMS αV

mMS

mc

mMS(µ) = Zmmlatt = (1 + Z1αV (aq∗) + Z2α
2
V (aq∗) + Z3α

3
V (aq∗) + · · · )mlatt



Errors: (fitting)(scale setting)(perturbative matching)
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Current-Current

mMS
c (µ = 3 GeV) = 0.9830(64)(49)(255)GeV



High beta works. Especially in combination 
with traditional P.T. 

We have a second consistent mc....

Conclusions

The same formulation for s and c make mc/ms 
an obvious target for investigation next

This Work: mMS(3 GeV) = 0.983(25)GeV
Current-Current: mMS(3 GeV) = 0.988(10)GeV


