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I. Phase of the Fermion Determinant at
µ 6= 0

√

Phase Dirac Eigenvalues
√

Phase Factor and Partition Functions
√

Lattice QCD in 1d
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Phase Factor and Dirac Eigenvalues

det(D + m + µγ0) = eiθ| det(D + m + µγ0)|
∏

k(λk + m) phase factor

Toussaint-1990
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quark mass mquark mass m

Scatter plot of Dirac eigenvalues

c

mcm

Barbour et al. 1986

m < mc then 〈eiθ〉 ∼ 0
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Phase Factor and Partition functions

〈e2iθ〉 =
〈(det(D + m + µγ0))

2〉
〈| det(D + m + µγ0)|2〉

≡
ZQCD

Nf=2

Z
|QCD|
Nf=2

=
ZQCD

Nf=2(µ)

ZQCD
Nf=2(µI = µ)

∼ e−V (FQCD−F|QCD|).

√

Phase quenched QCD is QCD at nonzero isospin chemical
potential:
| det(D + m + µγ0)|2 = det(D + m + µγ0) det(D + m − µγ0).

√

No sign problems for Nc → ∞ (Cohen-2004):
FQCD(µ) = F|QCD|(µ) + O( 1

Nc
).
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Phase Diagram of QCD and |QCD|

Τ

µ = mN/3

critical endpoint

〈q̄q〉 6= 0〈q̄q〉 6= 0

〈qq〉 6= 0

µ

〈q̄q〉 = 0

Schematic QCD phase diagram.
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deconfined

superconductingB = 1
2

crystal

4.4

4.5

4.6

4.7

4.8

β
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I
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0.8

0.7

0.6

0.5

T
/T

c

GC MC
Quartic fit
Critical pointHadronic gas

Plasma

BEC

mπ/T

Phase diagram of phase quenched

QCD (de Forcrand-Stephanov-Wenger-

2007). Agrees with earlier work by Kogut

and Sinclair).
Z|QCD| has a phase transition at µ = mπ/2 so that the free energies of the two
theories are completely different.

An nonzero temperature the free energies are different for any nonzero value of the
chemical potential.
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Remarks
√

Eigenvalues are distributed more or less homogeneously inside a
strip.

√

The strip has a hard edge.
√

Convergence of the average phase factor. What is the asymptotic
p dependence of the ratio

〈
Qp

k=−p
(λQCD

k
+m)〉

〈
Qp

k=−p
(λ

|QCD|
k

+m)〉
?

√

If the chemical potential is in the microscopic domain (i.e.
µ2F 2

πV = fixed for V → ∞ ), this ratio is determined by
eigenvalues in the microscopic domain (i.e., λk ≪ 1/Fπ

√
V ).

√

Random matrix theory suggest that for finite µ the convergence
might be as slow as O(

√

N/p) .
√

The phase factor is essential for physical observables.

Phase of the Fermion Determinant – p. 9/27



Lattice QCD in 1d at µ 6= 0

µ
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µ

m

Dirac spectrum of 1d QCD

sinh

cosh

λ k

Σ(m) =

D

P

k
1

λk+m

Q

k(λk+m)
E

D∏

k(λk + m)
E

determinant with
a complex phase

Eigenvalues are located an ellipse with a random overall phase.

In the limit of a dense spectrum, Σ(m) is discontinuous across the
imaginary axis despite the fact that there are no eigenvalues for µ 6= 0.
The phase of the determinant is responsible for this.

The resolvent is continuous across the ellipse where the eigenvalues
are located.
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II. Phase Factor in Chiral Perturbation
Theory

√

One Loop Result
√

Comparison with Lattice Results
√

Probability Distribution of the Phase
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One Loop Chiral Perturbation Theory
The chiral Lagrangian depends on the the isospin chemical potential
but not on the the quark number chemical potential.

To one loop order in an expansion in mπ/Fπ , µ/Fπ and T/Fπ we
thus find

〈det2(D + m + µγ0)〉 ∼ e
−V F

(0)
Nf =2

∏

k

∏

p

1
√

m2
k + ~p2 + p2

0

〈| det(D + m + µγ0)|2〉 ∼ e−V F (0)
pq

∏

k

∏

p

1
√

m2
k + ~p2 + (p0 − 2iµ)2

For T = 0 : FNf =2 = Fpq + O(1/V ) for µ < mπ/2.

For T 6= 0 and µ = 0 the one loop integral was evaluated by
Hasenfratz and Leutwyler. Their calculation can be generalized to
µ 6= 0 (Splittorff-JV-2007).

Notice that the mass of the Goldstone bosons is given by
Mk(µ) = mπ − qkµI (with qk the isospin charge).
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One Loop Result for µ < mπ/2

For each Goldstone boson we find
∏

p
1√

m2
k
+~p2+(p0−2iµ)2

= e
1
2 G0(µ)

Only charged Goldstone bosons contribute to the ratio of the two
partition functions. µ 6= 0 we find:

〈e2iθ〉pq = eG0(µ=0)−G0(µ)

= (mπ−2µ)(mπ+2µ)
m2

π
eh(m2

πL2,µ2L2),

with h a finite function. Splittorff-JV-2007

zero momentum contribution

can be derived from random matrix theory
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One-Loop Result
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Temperature Dependence of 〈exp(iθ)〉

L  m   = 3

1/L   m

<exp(2i  )>

0

i π

π

θ

π2    /mµ

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 0
 0.5
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 4
 0
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 0.8

 1

Splittorff-JV-2007
Average phase factor for Nf = 2 as a function of the chemical potential and

the temperature ( 1/L0 ).

Simulations are possible for small chemical potentials or low
temperatures.

Phase of the Fermion Determinant – p. 15/27



Comparison with Lattice Simulations
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CPT
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0
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1

T/Tc = 0.76 T/Tc = 0.90

T/Tc = 1.00 T/Tc = 1.11

Average phase factor in lattice QCD using the

lowest order Taylor expansion (Allton-et-al.-2005)

compared to one loop chiral perturbation theory in

a box equal to the size of the lattice.

Ratio of quark and isospin susceptibility

(χq/χI) to second order in µ (data: All-

ton et al. 2005)

Nf = 2

mπ/Tc = 3.58

〈e2iθ〉1+1∗ =
ZQCD(µ)

Z|QCD|(µ)

∼ eV µ2(χq−χI).
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Probability Distribution of the Phase

The density of the phase angle is defined by θ

ρ(φ) = 〈δ(φ −
z }| {

Im log det(D + m + µγ0))〉Nf

Notice that φ ∈ 〈−∞,∞〉 .
√

According to the Central Limit Theorem we expect that ρ(φ) is a
Gaussian. Ejiri-2007.

√

If the average is over dynamical quarks, the phase density is
complex,

〈δ(φ − θ)eiNf θ|detNf (D + m + µγ0)|〉
= eiNf φ〈δ(φ − θ)|detNf (D + m + µγ0)|〉 .

√

Observables are determined by correlations with the phase of the
fermion determinant. Knowing the Gaussian distribution is clearly
not sufficient.
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Derivation of the Phase Density

ρNf
(φ) = 〈δ(φ − Im log det(D + m + µγ0))〉Nf

= 〈
∑

n

ein(φ−Im log det(D+m+µγ0)〉Nf

The phase density therefore follows from the moments of the phase
factor.

〈e2inθ〉Nf
=

1

ZNf

〈

detn+Nf (D + m + µγ0)

detn(D† + m + µγ0)

〉

We have 2n(n + Nf ) charged Goldstone particles. They are fermions.
All uncharged Goldstone particles are bosons. We thus find

〈e2inθ〉Nf
= e

n(n+Nf )[G0(µ = 0) − G0(µ)])
︸ ︷︷ ︸

-∆G
Phase of the Fermion Determinant – p. 18/27



Phase Density

By Poisson resummation we obtain

ρ(φ) =
∑

n

einφe−n(n+Nf )∆G =
e

1
4 N2

f ∆G

√
π∆G

eiNf φ− φ2

∆G .

-20 -10 0 10 20
θ=(N

f
/4)Im[ln(det M)]

0

100

200

300

400

µ
q
/T=1.0

µ
q
/T=2.0

Phase density in lattice QCD.

Ejiri-2007

√

Gaussian distribution modified by
a phase.

√

∆G ∼ V T 2µ2 .
√

Agrees (up to the overall phase)
with lattice results by Ejiri obtained
by Tailor expansion of the phase
angle.
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III. Quenched Average Phase Factor and
Analyticity in µ

√

Quenched RMT result
√

Phase Factor at Imaginary Chemical Potential
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Quenched Average Phase Factor

√

The quenched average phase factor is given by

〈e2iθ〉q =

〈∏

k(λk + m)
∏

k(λ∗
k + m)

〉

q

.

√

This expression contains integrable poles.
√

Is the quenched average phase factor analytic in µ ?
√

We can answer this question in the microscopic domain of QCD
where the QCD partition function is given by chiral random matrix
theory.

√

Using a version of the random matrix model proposed by Osborn
(2004) the model is analytically solvable in terms of complex
orthogonal polynomials.
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Quenched RMT Result

〈e2iθ〉Nf =0 = 1 − 4µ̂2I0(m̂)K0(m̂)

−e−2µ̂2 1

4µ̂2
e
− m̂2

8µ̂2

Z ∞

m̂
dxx exp[− x2

4µ̂2
]K0

„

xm̂

4µ̂2

«

(I0(x)m̂I1(m̂) − xI1(x)I0(m̂)) ,

Splittorff-JV-2007

m̂ = mV Σ

µ̂ = µ − Fπ

√
V

0 0.5 1 1.5
2µ/mπ

0

0.2

0.4

0.6

0.8

1

<
e
x
p

(2
iθ

)>
N

f=
2

mΣV  =  4
mΣV >> 1

Splittorff-JV-2006

√

Reduces to mean field result for Nf flavors,
(

1 − 4µ2

m2
π

)Nf +1

, µ < mπ/2,

for µ̂ → ∞, m̂ → ∞: and is exponentially
suppressed for µ > mπ/2.

√

This expression has an essential singularity
at µ = 0 .

√

What about analytical continuation to
imaginary chemical potential?
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Average Phase Factor at Imaginary
Chemical Potential

Analytical continuation of phase factor
(Splittorff-Svetitsky-2007)
( det∗(D + m + muγ0) = det(D + m − µγ0) )

〈
det(D + m + iµγ0)

det(D + m − iµγ0)

〉

Has been evaluated analytically in the
microscopic domain of QCD. In the
quenched case we find

1 − 4µ̂2I0(m̂)K0(m̂).

Damgaard-Splittorff-2006

Splittorff-JV-2006

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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θ(
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))
>

<Φ+−>
<Φ−+>

Nf=0  8
4
  µFV

1/2
=0.159  ΣV=1039

“Phase” of the fermion deter-
minant for imaginary chemi-
cal potential.

Splittorff-Svetitsky-2007
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Discussion of Quenched Phase Factor

〈e2iθ〉Nf =0 = 1 − 4µ̂2I0(m̂)K0(m̂) Splittorff-JV-2007

−e−2µ̂2 1
4µ̂2 e

− m̂2

8µ̂2
R ∞

m̂ dxx exp[− x2

4µ̂2 ]K0

“

xm̂
4µ̂2

”

(I0(x)m̂I1(m̂) − xI1(x)I0(m̂)) ,

√

The first two terms are obtained by analytical continuation from
imaginary chemical potential.

√

The second term has an essential singularity at µ = 0 and cannot
be obtained by analytical continuation.

√

The second term nullifies the first term for µ > mπ/2.
√

Taylor expansion of 〈e2iθ〉Nf=0 also fails for QCD in 1d.
√

The question is why the average phase factor is nonanalytic, and
whether this should be a warning sign for other observables.
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IV. Conclusions
√

The sign problem is severe when the quark mass is inside the
support of the Dirac eigenvalues (i.e. for µ > mπ/2) .
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√

For T < Fπ , the sign problem becomes manageable in the
microscopic domain of QCD ( µ2F 2

πV ∼ O(1) ).
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√
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√
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√

In the domain of validity of chiral perturbation theory the
distribution of the phase of the quark determinant is a Gaussian
modified by a complex phase.
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√
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√
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πV ∼ O(1) ).
√
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distribution of the phase of the quark determinant is a Gaussian
modified by a complex phase.

√

The width of this distribution behaves as ∼ µT
√

V

Phase of the Fermion Determinant – p. 25/27



IV. Conclusions
√

The sign problem is severe when the quark mass is inside the
support of the Dirac eigenvalues (i.e. for µ > mπ/2) .

√

For T < Fπ , the sign problem becomes manageable in the
microscopic domain of QCD ( µ2F 2

πV ∼ O(1) ).
√

In the domain of validity of chiral perturbation theory the
distribution of the phase of the quark determinant is a Gaussian
modified by a complex phase.

√

The width of this distribution behaves as ∼ µT
√

V

√

In the microscopic domain of QCD the quenched average phase
factor is nonanalytic in µ . We suspect this nonanalyticity is due to
the presence of uncompensated zeros and does not occur in
observables that are derivatives of the QCD partition function.
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Temperature Dependence of 〈e2iθ〉

Scatter plot of Dirac eigenvalues obtained from a schematic chiral
random matrix model. This random matrix model has the spectral
flow of QCD and is equivalent to the zero momentum limit of a
chiral Lagrangian.
The average phase factor becomes nonzero when the quark
mass is outside the spectral support. The quark mass is indi-
cated by the black dot. Ravagli-JV-2007
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Spectral Density for Nf = 1

The spectral density can be decomposed as

ρ̂Nf =1(x̂, ŷ, m̂; µ̂) = ρ̂Q(x̂, ŷ; µ̂) + ρ̂R(x̂, ŷ, m̂; µ̂),

with (ẑ = x̂ + iŷ)

ρ̂R(x̂, ŷ, m̂; µ̂) =
|ẑ|2
2πµ̂2

e−(ẑ2+ẑ∗ 2)/(8µ̂2)

×K0(
|ẑ|2
4µ̂2

)
I0(ẑ)

I0(m̂)

Z 1

0
dt te−2µ̂2t2I0(ẑ∗t)I0(m̂t).

Quenched spectral density

ρ̂Q(x̂, ŷ; µ̂) = ρ̂U (x̂, ŷ, x̂ + iŷ; µ̂).

Osborn-2004
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