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Chiral symmetry on the lattice

chiral symmetry on the lattice – Ginsparg-Wilson relation:

{D,γ5}= aDγ5D

massless overlap Dirac-operator (Neuberger-Narayanan)

Dov = 1+ γ5 sign(γ5DW )

Dov satisfies GWR because sign2(A) = 1

kernel γ5DW Hermitian→ γ5Dov = D†
ovγ5 (γ5-Hermiticity)

Dov has exact zero modes with definite chirality 〈γ5〉=±1 reflecting
topological charge of gauge configuration (Atiyah-Singer index theorem)
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Chiral symmetry on the lattice at nonzero quark density

Generalize overlap Dirac operator to nonzero quark chemical potential

replace DW by DW (µ) in overlap definition:

Overlap operator at µ 6= 0

Dov(µ) = 1+ γ5 sign(γ5DW (µ))

JB, Wettig PRL97(012003) 2006

Wilson-Dirac operator at µ 6= 0

DW (µ) = 1−κ
3
∑

i=1

(T+i + T−i )−κ(e
µT+4 + e−µT−4 )

with (T±ν )y x = (1± γν )Ux ,±νδy,x±ν̂

Hasenfratz-Karsch 1983, Kogut et al. 1983

kernel γ5DW (µ) no longer Hermitian:

Dov(µ) requires definition of sign of a non-Hermitian matrix
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Function of a matrix

spectral definition of matrix function:

if A diagonalizable: A= U diag{λi}U−1

f (A) = U diag{ f (λi)}U−1

with complex eigenvalues λ1, . . . ,λN and eigenvector matrix U

if A not diagonalizable: spectral definition using Jordan canonical form

Sign function of non-Hermitian matrix requires sign of complex number:

sign(z) =
z
p

z2
= sign(Re z)

ensures sign2(z) = 1
gives correct result for z ∈ R

definition ensures sign2(A) = 1
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Typical spectrum (V = 44,β = 5.1, mW =−2)

µ= 0.3

Dov(µ) satisfies Ginsparg-Wilson relation→ lattice chiral symmetry
exact zero modes with definite chirality
naturally violates γ5-Hermiticity→ spectrum no longer on circle
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Iterative method for function of non-Hermitian matrix

exact computation of sign(A) only possible for small volumes
memory requirements (store full matrix)
computation time (compute full diagonalization)

develop iterative method to compute f (A)b for non-Hermitian A

exact statement: for the unique polynomial PK(z) which interpolates
f (z) at all eigenvalues of A,

PK(A)b = f (A)b for any vector b

approximation method for y = f (A)b:
construct good low degree polynomial approximation to f on λ(A) wrt b

depends on spectrum of A
depends on decomposition of b in eigenvectors of A
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Constructing an Arnoldi basis

Krylov subspace: Kk(A, b) = span(b, Ab, A2 b, . . . , Ak−1 b).
contains all vectors resulting from action of arbitrary polynomial of degree
≤ k− 1 in A on vector b
one of these vectors minimizes ||Pk−1(A)b− f (A)b|| over all polynomials of
degree ≤ k− 1→ namely, the projection of f (A)b on the Krylov subspace

Arnoldi method uses the recursive scheme

AVk = VkHk + βkvk+1eT
kwith

V †
k AVk = Hk

to build an orthonormal basis Vk = (v1, . . . , vk) in Kk(A, b), where:
Hk is a k× k Hessenberg matrix (upper triangular + one subdiagonal)
eigenvalues of Hk are Ritz values of A w.r.t. Kk(A, b)
v1 = b/|b|
βk: normalization of vk+1, ek is the k-th basis vector in Ck.
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Arnoldi approximation for function of non-Hermitian matrix

projection of y = f (A)b on Kk(A, b):
y ≈ yproj = VkV †

k f (A)b = VkV †
k f (A)Vk
︸ ︷︷ ︸

V †
k b

≈ f (Hk)→Ritz approximation

approximation to yproj using V †
k f (A)Vk ≈ f (Hk)

yproj ≈ ỹ = |b|Vk f (Hk)e1

ỹ ∈ Kk(A, b)
f (x) interpolated at Ritz values of A wrt Kk(A, b)
problem reduced to computation of f (Hk) (dim Hk � dim A)

f (Hk) computed with suitable method
exactly with spectral decomposition
suitable approximation method
e.g., for sign function use Roberts’ matrix-iterative method:

Sn+1 =
1

2

�

Sn + (Sn)−1
�

, with S0 = A
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Sign function and deflation – Hermitian case

problem: need large Krylov space if A has small eigenvalues

reason: in region of C where f changes rapidly
→ hard to approximate f by low-degree polynomial

solution: improve efficiency by using exact value of f for critical
eigenvalues of A
Hermitian case: deflation straightforward because any # eigenvectors
form subspace orthonormal to remaining eigenvectors:

f (A)b = U f (Λ)U† b =
m
∑

i=1

f (λi)(u
†
i b)ui

︸ ︷︷ ︸

exact

+ f (A)b⊥
︸ ︷︷ ︸

approximation

ui eigenvector corresp. to λi , and b⊥ = b−
∑m

i=1(u
†
i b)ui

compute eigenvalues and eigenvectors needed for deflation once ∀b

approximation for f (A)b⊥ in space ⊥ span(u1, . . . , um)

simple decomposition does not work in the non-Hermitian case since
eigenvectors of A are not orthonormal
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Non-Hermitian case: Left-Right deflation

use left and right eigenvectors belonging to m critical eigenvectors

ARm = RmΛm

L†
mA= Λm L†

m

Λm is the diagonal eigenvalue matrix for the m critical eigenvalues
Rm = (r1, . . . , rm) is the matrix of right eigenvectors
Lm = (`1, . . . ,`m) is the matrix containing the left eigenvectors
L†

mRm = Im, and Rm L†
m is oblique projector on the subspace Ωm

decompose b as

b = b‖+ b	
where b‖ = Rm L†

m b is oblique projection of b on Ωm and b	 = b− b‖
f (A)b = f (A)Rm L†

m b+ f (A)b	
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Left-Right deflation – the approximation

1st term: exact contribution

f (A)Rm L†
m b = Rm f (Λm)L

†
m b

2nd term: Arnoldi method in the Krylov subspace Kk(A, b	)

AVk = VkHk + βkvk+1eT
k

Finally,

f (A)b ≈ Rm f (Λm)L†
m b+ |b	|Vk f (Hk)e1

compute f (Hk) with suitable method
only needs first column of f (Hk)
requires left and right critical eigenvectors
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Deflation and convergence for Dov(µ)b

44 lattice (dim=3072)
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64 lattice (dim=15552)
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initialization phase: determine right and left eigenvectors of γ5Dw(µ)
corresponding to eigenvalues with smallest magnitude using ARPACK

trade-off between # of deflated eigenvalues and Krylov subspace size

deflation is essential to reach satisfying efficiency
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Deflation efficiency for increasing volume

44 versus 64 lattice – LR-deflation
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deflation efficiency grows with increasing lattice volume
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Two-sided Lanczos method

Arnoldi method suffers from long recurrences
→ Two-sided Lanczos: short recurrences but only bi-orthogonal

Consider two Krylov subspaces Kk(A, v1) and Kk(A†, w1)

Construct bi-orthogonal bases Vk and Wk such that
W †

k Vk = Ik

Gk ≡W †
k AVk is tridiagonal

Gk ≡W †
k AVk =

















α1 γ1 0 · · · 0

β1 α2

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . γk−1

0 · · · 0 βk−1 αk

















Vk and Wk can be built with short recurrence relations:
¨

βi vi+1 = (A−αi)vi − γi−1vi−1,

γ∗i wi+1 = (A
† −α∗i )wi − β∗i−1wi−1,

where
αi = w†

i Avi and βi ,γi from w†
i+1vi+1 = 1

15 / 20



Two-sided Lanczos approximation + deflation

VkW †
k is oblique projector on Kk(A, v1)

oblique projection of f (A)b on Kk(A, b):
y ≈ yobl = Vk W †

k f (A)Vk
︸ ︷︷ ︸

W †
k b

approximation to yobl using W †
k f (A)Vk ≈ f (Gk)

yobl ≈ ỹ = |b|Vk f (Gk)e1
ỹ ∈ Kk(A, b)
problem reduced to computation of f (Gk) (dim Gk � dim A)

Enhance with LR-deflation:
construct bi-orthogonal bases Vk and Wk in Kk(A, bR

	) and Kk(A†, bL
	),

where directions along Rm, resp. Lm, have been fully deflated from b:
bR
	 = (1− Rm L†

m)b and bL
	 = (1− LmR†

m)b.
Function approximation:

f (A)b ≈ Rm f (Λm)L†
m b+ |bR

	|Vk f (Gk)e1
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Two-sided Lanczos – Deflation and convergence for Dov(µ)b

44 lattice (dim=3072)

0 200 400 600 800 1000 1200 1400 1600
Krylov subspace size

1x10-10

 

1x10-8

 

1x10-6

 

0.0001

 

0.01

 

1

er
ro

r

m=0

2
4

8

16

32

64

64 lattice (dim=15552)
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Arnoldi versus two-sided Lanczos – CPU-time

44 lattice (dim=3072)
m= 32 – LR-deflation

initialization time: 27.5 sArnoldi
k Arnoldi sign(Hk) total

200 0.45 0.20 0.66
400 1.77 1.02 2.82
600 3.94 2.77 6.74
800 6.96 6.44 13.44
1000 10.84 12.33 23.21

two-sided Lanczos
k 2s-Lanczos sign(Gk) total

200 0.11 0.19 0.31
400 0.20 0.98 1.20
600 0.31 2.82 3.15
800 0.43 6.52 6.97

1000 0.51 12.45 13.00

64 lattice (dim=15552)
m= 128 – LR-deflation
initialization time: 1713 sArnoldi

k Arnoldi sign(Hk) total
200 2.39 0.15 2.62
400 9.01 0.94 10.06
600 20.03 2.80 22.98
800 35.09 6.49 41.78
1000 54.74 12.36 67.34

two-sided Lanczos
k 2s-Lanczos sign(Gk) total

200 0.60 0.19 0.87
400 1.17 0.95 2.24
600 1.72 2.84 4.71
800 2.33 6.55 9.08

1000 3.02 12.45 15.69

Arnoldi basis ∼ Nk2 2s-Lanczos basis ∼ Nk
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Arnoldi versus two-sided Lanczos – deflation efficiency

44 lattice (dim=3072)
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Outlook

recursive Krylov subspace method for inner function computation

alternative iterative methods:
restarted Arnoldi (stability problems)
partial fraction expansion

improve efficiency of deflation

apply method to larger lattices→ physics (tested for 84 lattice)

use method in eigenvalue determination of overlap operator
test for 64 lattice using Arpack on Intel Core 2 Duo 2.33GHz
initialization: computing the 128 smallest eigenvalues of kernel ∼ 30 min
compute 16 smallest eigenvalues of overlap operator with accuracy of 10−4

Arnoldi approximation with k = 400 ∼ 1h30min
2S-Lanczos approximation with k = 600 ∼ 50min, k = 400 ∼ 25min

use method in inversion of overlap operator
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