# Comparing iterative methods to compute the overlap Dirac operator at nonzero chemical potential 

Jacques Bloch, Tobias Breu, and Tilo Wettig

Institute for Theoretical Physics, University of Regensburg

Lattice 2008, Williamsburg, Virginia, USA, 14-19 July 2008

## Outline

(1) Lattice implementation of chiral symmetry at nonzero quark density

- Overlap Dirac operator at nonzero quark chemical potential
- Sign function of non-Hermitian matrix
(2) Iterative methods for function of non-Hermitian matrix
- Arnoldi approximation
- Two-sided Lanczos approximation
- Deflation
- Results



## Chiral symmetry on the lattice

- chiral symmetry on the lattice - Ginsparg-Wilson relation:

$$
\left\{D, \gamma_{5}\right\}=a D \gamma_{5} D
$$

- massless overlap Dirac-operator (Neuberger-Narayanan)

$$
D_{\mathrm{ov}}=\mathbb{1}+\gamma_{5} \operatorname{sign}\left(\gamma_{5} D_{W}\right)
$$

- $D_{\text {ov }}$ satisfies GWR because $\operatorname{sign}^{2}(A)=\mathbb{1}$
- kernel $\gamma_{5} D_{W}$ Hermitian $\rightarrow \gamma_{5} D_{\text {ov }}=D_{\text {ov }}^{\dagger} \gamma_{5}$ ( $\gamma_{5}$-Hermiticity)
- $D_{\text {ov }}$ has exact zero modes with definite chirality $\left\langle\gamma_{5}\right\rangle= \pm 1$ reflecting topological charge of gauge configuration (Atiyah-Singer index theorem)


## Chiral symmetry on the lattice at nonzero quark density

Generalize overlap Dirac operator to nonzero quark chemical potential - replace $D_{W}$ by $D_{W}(\mu)$ in overlap definition:

Overlap operator at $\mu \neq 0$

$$
D_{\text {ov }}(\mu)=\mathbb{1}+\gamma_{5} \operatorname{sign}\left(\gamma_{5} D_{W}(\mu)\right)
$$

JB, Wettig PRL97(012003) 2006

$$
\begin{aligned}
& \text { Wilson-Dirac operator at } \mu \neq 0 \\
& \qquad \begin{aligned}
& D_{W}(\mu)=1-\kappa \sum_{i=1}^{3}\left(T_{i}^{+}+T_{i}^{-}\right)-\kappa\left(e^{\mu} T_{4}^{+}+e^{-\mu} T_{4}^{-}\right) \\
& \text {with }\left(T_{v}^{ \pm}\right)_{y x}=\left(1 \pm \gamma_{v}\right) U_{x, \pm v} \delta_{y, x \pm \hat{v}} \\
& \text { Hasenfratz-Karsch 1983, Kogut et al. } 1983
\end{aligned}
\end{aligned}
$$

- kernel $\gamma_{5} D_{W}(\mu)$ no longer Hermitian:
$D_{\mathrm{ov}}(\mu)$ requires definition of sign of a non-Hermitian matrix


## Function of a matrix

- spectral definition of matrix function:
- if $A$ diagonalizable: $A=U \operatorname{diag}\left\{\lambda_{i}\right\} U^{-1}$

$$
f(A)=U \operatorname{diag}\left\{f\left(\lambda_{i}\right)\right\} U^{-1}
$$

with complex eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$ and eigenvector matrix $U$

- if $A$ not diagonalizable: spectral definition using Jordan canonical form
- Sign function of non-Hermitian matrix requires sign of complex number:

$$
\operatorname{sign}(z)=\frac{z}{\sqrt{z^{2}}}=\operatorname{sign}(\operatorname{Re} z)
$$

- ensures $\operatorname{sign}^{2}(z)=1$
- gives correct result for $z \in \mathbb{R}$
- definition ensures $\operatorname{sign}^{2}(A)=\mathbb{1}$


## Typical spectrum $\left(V=4^{4}, \beta=5.1, m_{W}=-2\right)$

$$
\mu=0.3
$$




- $D_{\text {ov }}(\mu)$ satisfies Ginsparg-Wilson relation $\rightarrow$ lattice chiral symmetry
- exact zero modes with definite chirality
- naturally violates $\gamma_{5}$-Hermiticity $\rightarrow$ spectrum no longer on circle


## Iterative method for function of non-Hermitian matrix

- exact computation of $\operatorname{sign}(A)$ only possible for small volumes
- memory requirements (store full matrix)
- computation time (compute full diagonalization)
- develop iterative method to compute $f(A) b$ for non-Hermitian $A$
- exact statement: for the unique polynomial $P_{K}(z)$ which interpolates $f(z)$ at all eigenvalues of $A$,

$$
P_{K}(A) b=f(A) b \quad \text { for any vector } b
$$

- approximation method for $y=f(A) b$ : construct good low degree polynomial approximation to $f$ on $\lambda(A)$ wrt $b$
- depends on spectrum of $A$
- depends on decomposition of $b$ in eigenvectors of $A$


## Constructing an Arnoldi basis

- Krylov subspace: $K_{k}(A, b)=\operatorname{span}\left(b, A b, A^{2} b, \ldots, A^{k-1} b\right)$.
- contains all vectors resulting from action of arbitrary polynomial of degree $\leq k-1$ in $A$ on vector $b$
- one of these vectors minimizes $\left\|P_{k-1}(A) b-f(A) b\right\|$ over all polynomials of degree $\leq k-1 \rightarrow$ namely, the projection of $f(A) b$ on the Krylov subspace
- Arnoldi method uses the recursive scheme
with

$$
A V_{k}=V_{k} H_{k}+\beta_{k} v_{k+1} e_{k}^{T}
$$

$$
V_{k}^{\dagger} A V_{k}=H_{k}
$$

to build an orthonormal basis $V_{k}=\left(v_{1}, \ldots, v_{k}\right)$ in $K_{k}(A, b)$, where:

- $H_{k}$ is a $k \times k$ Hessenberg matrix (upper triangular + one subdiagonal)
- eigenvalues of $H_{k}$ are Ritz values of $A$ w.r.t. $K_{k}(A, b)$
- $v_{1}=b /|b|$
- $\beta_{k}$ : normalization of $v_{k+1}, e_{k}$ is the $k$-th basis vector in $\mathbb{C}^{k}$.


## Arnoldi approximation for function of non-Hermitian matrix

- projection of $y=f(A) b$ on $K_{k}(A, b)$ :

$$
y \approx y_{\text {proj }}=V_{k} V_{k}^{\dagger} f(A) b=V_{k} \underbrace{V_{k}^{\dagger} f(A) V_{k}}_{\approx f\left(H_{k}\right) \rightarrow \text { Ritz approximation }} V_{k}^{\dagger} b
$$

- approximation to $y_{\text {proj }}$ using $V_{k}^{\dagger} f(A) V_{k} \approx f\left(H_{k}\right)$

$$
y_{\text {proj }} \approx \tilde{y}=|b| V_{k} f\left(H_{k}\right) e_{1}
$$

- $\tilde{y} \in K_{k}(A, b)$
- $f(x)$ interpolated at Ritz values of $A$ wrt $K_{k}(A, b)$
- problem reduced to computation of $f\left(H_{k}\right)\left(\operatorname{dim} H_{k} \ll \operatorname{dim} A\right)$
- $f\left(H_{k}\right)$ computed with suitable method
- exactly with spectral decomposition
- suitable approximation method e.g., for sign function use Roberts' matrix-iterative method:

$$
S^{n+1}=\frac{1}{2}\left[S^{n}+\left(S^{n}\right)^{-1}\right] \quad, \quad \text { with } \quad S^{0}=A
$$

## Sign function and deflation - Hermitian case

- problem: need large Krylov space if $A$ has small eigenvalues
- reason: in region of $\mathbb{C}$ where $f$ changes rapidly $\rightarrow$ hard to approximate $f$ by low-degree polynomial
- solution: improve efficiency by using exact value of $f$ for critical eigenvalues of $A$
- Hermitian case: deflation straightforward because any \# eigenvectors form subspace orthonormal to remaining eigenvectors:

$$
f(A) b=U f(\Lambda) U^{\dagger} b=\sum_{i=1}^{m} \underbrace{f\left(\lambda_{i}\right)\left(u_{i}^{\dagger} b\right) u_{i}}_{\text {exact }}+\underbrace{f(A) b_{\perp}}_{\text {approximation }}
$$

- $u_{i}$ eigenvector corresp. to $\lambda_{i}$, and $b_{\perp}=b-\sum_{i=1}^{m}\left(u_{i}^{\dagger} b\right) u_{i}$
- compute eigenvalues and eigenvectors needed for deflation once $\forall b$
- approximation for $f(A) b_{\perp}$ in space $\perp \operatorname{span}\left(u_{1}, \ldots, u_{m}\right)$
- simple decomposition does not work in the non-Hermitian case since eigenvectors of $A$ are not orthonormal


## Non-Hermitian case: Left-Right deflation

- use left and right eigenvectors belonging to $m$ critical eigenvectors

$$
\begin{aligned}
A R_{m} & =R_{m} \Lambda_{m} \\
L_{m}^{\dagger} A & =\Lambda_{m} L_{m}^{\dagger}
\end{aligned}
$$

- $\Lambda_{m}$ is the diagonal eigenvalue matrix for the $m$ critical eigenvalues
- $R_{m}=\left(r_{1}, \ldots, r_{m}\right)$ is the matrix of right eigenvectors
- $L_{m}=\left(\ell_{1}, \ldots, \ell_{m}\right)$ is the matrix containing the left eigenvectors
- $L_{m}^{\dagger} R_{m}=I_{m}$, and $R_{m} L_{m}^{\dagger}$ is oblique projector on the subspace $\Omega_{m}$
- decompose bas

$$
b=b_{\|}+b_{\ominus}
$$

where $b_{\|}=R_{m} L_{m}^{\dagger} b$ is oblique projection of $b$ on $\Omega_{m}$ and $b_{\ominus}=b-b_{\|}$

$$
f(A) b=f(A) R_{m} L_{m}^{\dagger} b+f(A) b_{\ominus}
$$

## Left-Right deflation - the approximation

- 1st term: exact contribution

$$
f(A) R_{m} L_{m}^{\dagger} b=R_{m} f\left(\Lambda_{m}\right) L_{m}^{\dagger} b
$$

- 2nd term: Arnoldi method in the Krylov subspace $K_{k}\left(A, b_{\ominus}\right)$

$$
A V_{k}=V_{k} H_{k}+\beta_{k} v_{k+1} e_{k}^{T}
$$

- Finally,

$$
f(A) b \approx R_{m} f\left(\Lambda_{m}\right) L_{m}^{\dagger} b+\left|b_{\ominus}\right| V_{k} f\left(H_{k}\right) e_{1}
$$

- compute $f\left(H_{k}\right)$ with suitable method
- only needs first column of $f\left(H_{k}\right)$
- requires left and right critical eigenvectors


## Deflation and convergence for $D_{\mathrm{ov}}(\mu) b$




- initialization phase: determine right and left eigenvectors of $\gamma_{5} D_{\mathrm{w}}(\mu)$ corresponding to eigenvalues with smallest magnitude using ARPACK
- trade-off between \# of deflated eigenvalues and Krylov subspace size deflation is essential to reach satisfying efficiency


## Deflation efficiency for increasing volume

$4^{4}$ versus $6^{4}$ lattice - LR-deflation

deflation efficiency grows with increasing lattice volume

## Two-sided Lanczos method

Arnoldi method suffers from long recurrences
$\rightarrow$ Two-sided Lanczos: short recurrences but only bi-orthogonal

- Consider two Krylov subspaces $K_{k}\left(A, v_{1}\right)$ and $K_{k}\left(A^{\dagger}, w_{1}\right)$
- Construct bi-orthogonal bases $V_{k}$ and $W_{k}$ such that
- $W_{k}^{\dagger} V_{k}=I_{k}$
- $G_{k} \equiv W_{k}^{\dagger} A V_{k}$ is tridiagonal

$$
G_{k} \equiv W_{k}^{\dagger} A V_{k}=\left(\begin{array}{ccccc}
\beta_{1} & \alpha_{2} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \gamma_{k-1} \\
0 & \cdots & 0 & \beta_{k-1} & \alpha_{k}
\end{array}\right)
$$

- $V_{k}$ and $W_{k}$ can be built with short recurrence relations:

$$
\left\{\begin{aligned}
\beta_{i} v_{i+1} & =\left(A-\alpha_{i}\right) v_{i}-\gamma_{i-1} v_{i-1}, \\
\gamma_{i}^{*} w_{i+1} & =\left(A^{\dagger}-\alpha_{i}^{*}\right) w_{i}-\beta_{i-1}^{*} w_{i-1},
\end{aligned}\right.
$$

where

$$
\alpha_{i}=w_{i}^{\dagger} A v_{i} \quad \text { and } \quad \beta_{i}, \gamma_{i} \text { from } w_{i+1}^{\dagger} v_{i+1}=1
$$

## Two-sided Lanczos approximation + deflation

- $V_{k} W_{k}^{\dagger}$ is oblique projector on $K_{k}\left(A, v_{1}\right)$
- oblique projection of $f(A) b$ on $K_{k}(A, b)$ :

$$
y \approx y_{\mathrm{obl}}=V_{k} \underbrace{W_{k}^{\dagger} f(A) V_{k}} W_{k}^{\dagger} b
$$

- approximation to $y_{\text {obl }}$ using $W_{k}^{\dagger} f(A) V_{k} \approx f\left(G_{k}\right)$

$$
y_{\text {obl }} \approx \tilde{y}=|b| V_{k} f\left(G_{k}\right) e_{1}
$$

- $\tilde{y} \in K_{k}(A, b)$
- problem reduced to computation of $f\left(G_{k}\right)\left(\operatorname{dim} G_{k} \ll \operatorname{dim} A\right)$
- Enhance with LR-deflation: construct bi-orthogonal bases $V_{k}$ and $W_{k}$ in $K_{k}\left(A, b_{\ominus}^{R}\right)$ and $K_{k}\left(A^{\dagger}, b_{\ominus}^{L}\right)$, where directions along $R_{m}$, resp. $L_{m}$, have been fully deflated from $b$ : $b_{\ominus}^{R}=\left(1-R_{m} L_{m}^{\dagger}\right) b$ and $b_{\ominus}^{L}=\left(1-L_{m} R_{m}^{\dagger}\right) b$.
Function approximation:

$$
f(A) b \approx R_{m} f\left(\Lambda_{m}\right) L_{m}^{\dagger} b+\left|b_{\ominus}^{R}\right| V_{k} f\left(G_{k}\right) e_{1}
$$

## Two-sided Lanczos - Deflation and convergence for $D_{\text {ov }}(\mu) b$

$4^{4}$ lattice $($ dim $=3072)$

$6^{4}$ lattice (dim=15552)


## Arnoldi versus two-sided Lanczos - CPU-time

$4^{4}$ lattice (dim=3072)

$$
m=32-\text { LR-deflation }
$$

Arnoldi

| $k$ | Arnoldi | $\operatorname{sign}\left(H_{k}\right)$ | total |
| :---: | :---: | :---: | :---: |
| 200 | 0.45 | 0.20 | 0.66 |
| 400 | 1.77 | 1.02 | 2.82 |
| 600 | 3.94 | 2.77 | 6.74 |
| 800 | 6.96 | 6.44 | 13.44 |
| 1000 | 10.84 | 12.33 | 23.21 |


| $k$ | 2s-Lanczos | $\operatorname{sign}\left(G_{k}\right)$ | total |
| :---: | :---: | :---: | :---: |
| 200 | 0.11 | 0.19 | 0.31 |
| 400 | 0.20 | 0.98 | 1.20 |
| 600 | 0.31 | 2.82 | 3.15 |
| 800 | 0.43 | 6.52 | 6.97 |
| 1000 | 0.51 | 12.45 | 13.00 |

$6^{4}$ lattice (dim=15552)

$$
m=128-\text { LR-deflation }
$$

Arnoldi

| $k$ | Arnoldi | $\operatorname{sign}\left(H_{k}\right)$ | total |
| :---: | :---: | :---: | :---: |
| 200 | 2.39 | 0.15 | 2.62 |
| 400 | 9.01 | 0.94 | 10.06 |
| 600 | 20.03 | 2.80 | 22.98 |
| 800 | 35.09 | 6.49 | 41.78 |
| 1000 | 54.74 | 12.36 | 67.34 |


| $k$ | 2s-Lanczos | $\operatorname{sign}\left(G_{k}\right)$ | total |
| :---: | :---: | :---: | :---: |
| 200 | 0.60 | 0.19 | 0.87 |
| 400 | 1.17 | 0.95 | 2.24 |
| 600 | 1.72 | 2.84 | 4.71 |
| 800 | 2.33 | 6.55 | 9.08 |
| 1000 | 3.02 | 12.45 | 15.69 |

Arnoldi basis $\sim N k^{2}$
2s-Lanczos basis $\sim N k$

## Arnoldi versus two-sided Lanczos - deflation efficiency



## Outlook

- recursive Krylov subspace method for inner function computation
- alternative iterative methods:
- restarted Arnoldi (stability problems)
- partial fraction expansion
- improve efficiency of deflation
- apply method to larger lattices $\rightarrow$ physics (tested for $8^{4}$ lattice)
- use method in eigenvalue determination of overlap operator
- test for $6^{4}$ lattice using Arpack on Intel Core 2 Duo 2.33 GHz
- initialization: computing the 128 smallest eigenvalues of kernel $\sim 30 \mathrm{~min}$
- compute 16 smallest eigenvalues of overlap operator with accuracy of $10^{-4}$
- Arnoldi approximation with $k=400 \sim 1 \mathrm{~h} 30 \mathrm{~min}$
- 2S-Lanczos approximation with $k=600 \sim 50 \mathrm{~min}, k=400 \sim 25 \mathrm{~min}$
- use method in inversion of overlap operator

