Initial guesses for multi-shift solvers

James Osborn
Argonne National Lab

Lattice 2008
July 14
College of William and Mary

Initial guesses for multi-shift solvers

- multi-shift solvers
- method for initial guess
- multi-source multi-shift solvers
- results
- extensions

multiple shift systems

- solve system of linear equations

$$
\begin{aligned}
& \left(A+\sigma_{1}\right) x_{1}=b \\
& \left(A+\sigma_{2}\right) x_{2}=b
\end{aligned}
$$

(A is matrix and σ constant (times identity))

- occur frequently lattice QCD
- multiple masses
- rational function approximation

multi-shift solvers

- typical solved with a Krylov method (CG)
- share same Krylov space $\left\{b, A b, A^{2} b, \ldots\right\}$
- can be solved simultaneously with same number of matrix-vector products as worst conditioned equation
[QMR: R. W. Freund (1993), MR: U. Glässner, et al. (1996),
BiCG: A. Boriçi (1996),
CG: B. Jegerlehner (1996)]

initial guesses

- want to use prior knowledge to reduce number of iterations
- restarting solver from approximate solutions
- projecting approximate low eigenmodes
- solving similar equations
- small changes in b
- small changes in A (chronological inverter [R. Brower, et al. (1995)])

initial guesses

- given initial guesses y_{k}, construct

$$
\begin{aligned}
& r_{1}=b-\left(A+\sigma_{1}\right) y_{1} \\
& r_{2}=b-\left(A+\sigma_{2}\right) y_{2}
\end{aligned}
$$

want to solve

$$
\begin{aligned}
& \left(A+\sigma_{1}\right) z_{1}=r_{1} \\
& \left(A+\sigma_{2}\right) z_{2}=r_{2}
\end{aligned}
$$

- right hand sides $\left(r_{k}\right)$ in general are not the same
- no longer share a Krylov space

initial guesses

- can choose (for 2 shifts)

$$
\begin{aligned}
& y_{1}=\left(A+\sigma_{2}\right) w \\
& y_{2}=\left(A+\sigma_{1}\right) w
\end{aligned}
$$

- for some w, then

$$
r_{1}=r_{2}=b-\left(A+\sigma_{1}\right)\left(A+\sigma_{2}\right) w
$$

- right hand sides are now the same

approximate solutions

- given approximate solutions

$$
\begin{array}{ll}
v_{1} \approx\left(A+\sigma_{1}\right)^{-1} b, & R_{1}=b-\left(A+\sigma_{1}\right) v_{1} \\
v_{2} \approx\left(A+\sigma_{2}\right)^{-1} b, & R_{2}=b-\left(A+\sigma_{2}\right) v_{2}
\end{array}
$$

- then

$$
\begin{aligned}
& w=\left(v_{1}-v_{2}\right) /\left(\sigma_{2}-\sigma_{1}\right) \approx\left[\left(A+\sigma_{1}\right)\left(A+\sigma_{2}\right)\right]^{-1} b \\
& r_{1}=r_{2}=\left[\left(A+\sigma_{2}\right) R_{1}-\left(A+\sigma_{1}\right) R_{2}\right] /\left(\sigma_{2}-\sigma_{1}\right)
\end{aligned}
$$

- if $\mathrm{v}_{1}, \mathrm{v}_{2}$ were exact solutions then restart residual would be zero

two-source two-shift solver

- to solve

$$
\begin{aligned}
& \left(A+\sigma_{1}\right) x_{1}=b_{1} \\
& \left(A+\sigma_{2}\right) x_{2}=b_{2}
\end{aligned}
$$

- choose "guesses" y_{k} such that:

$$
\begin{aligned}
& b_{1}-\left(A+\sigma_{1}\right) y_{1}=b_{2}-\left(A+\sigma_{2}\right) y_{2} \\
& \rightarrow y_{1}=y_{2}=\left(b_{2}-b_{1}\right) /\left(\sigma_{2}-\sigma_{1}\right)
\end{aligned}
$$

- equivalent to previous slide for $b_{k}=R_{k}$

multi-source multi-shift solver

- extension to n equations:

$$
\left(A+\sigma_{k}\right) x_{k}=b_{k}, \quad \text { for } k=1 . . n
$$

- choose y_{k} such that

$$
b_{k}-\left(A+\sigma_{k}\right) y_{k}=r, \quad \text { for } k=1 . . n
$$

- set

$$
y_{k}=\sum_{i=0}^{n-2} A^{i} z_{k, i}
$$

- equate powers of A and solve for $z_{k, i}$ in terms of b's

initial guesses: spacial case of multi-source multi-shift solver

- for $b_{k}=b-\left(A+\sigma_{k}\right) v_{k}$
- equivalent to setting

$$
\begin{array}{llll}
y_{1}= & \left(A+\sigma_{2}\right)\left(A+\sigma_{3}\right) \ldots & \left(A+\sigma_{n}\right) w \\
y_{2}=\left(A+\sigma_{1}\right) \quad\left(A+\sigma_{3}\right) \ldots & \left(A+\sigma_{n}\right) w \\
& \ldots \\
y_{n}=\left(A+\sigma_{1}\right)\left(A+\sigma_{2}\right) \ldots & \left(A+\sigma_{n-1}\right)
\end{array}
$$

- for some $w \in \operatorname{span}\left(v_{k}\right)$, with common residual $r=b-\left(A+\sigma_{1}\right)\left(A+\sigma_{2}\right) \ldots\left(A+\sigma_{n}\right) w$

results: approximate solutions

- random 32^{4} lattice
- preconditioned asqtad operator $\left(m_{k}^{2}-D_{\text {eo }} D_{o e}\right) x_{k}=b$
- b: point source
- final $|r|^{2}=1 e-6$
- starting from solutions with $|r|^{2}<1 e-3$ $\left(\left|r_{k}\right|^{2}<1 e-6\right.$ for $\left.k>2\right)$
- $m_{k}=m_{1} \times d^{(k-1)}$
- all work in double precision

results: approximate solutions

m1			$\mathrm{n}=1$	=2	=3	$\mathrm{n}=4$	n=5	$\mathrm{n}=6$
. 10	2	683	334 (9.9e-04)	445 (3.6e+04	488 (1.1e+11)	509 (2.0e+16)	518 (2.5	523 (2.1e+2
. 010	$\sqrt{ }$	683	(9.9e-04)	489 (2.3e	575 (1.4e+13)	635	26)	985 (5.6e+
0.005	2	1365	666 (9.9e-04)	892 (6.0e+05)	8 (2	1018 (8.9)	
0.005	V2	1365	666 (9.9e-04)	977 (3.8e+	1151 (3.8e+15)	1272 (8.8	1)	
. 02	2	3417	1668 (1.0e-03)	228	2445 (4.3e+16)	25	3965 (4.1e+31)	
0.0	$\sqrt{ } 2$	3417	1668 (1.0e-03)	2445 (1.5	$2885(5.88+18)$	3246	2010	
0.001	2	6830	3353 (1	4464 (3		5328	0000	
. 001	,	6830	3353 (1	4886				

- number of iterations (starting $|r|^{2}$)
- even with large starting residual, needs fewer iterations than no guess
- breaks down for more/smaller shifts due to needed residual reduction being too large

choosing guesses

- general strategies for choosing guesses
- globally optimize for w $r=b-\left(A+\sigma_{1}\right)\left(A+\sigma_{2}\right) \ldots\left(A+\sigma_{n}\right) w$
- minimize norm of residual
- project out from residual
- individually optimize
$r_{k}=b-\left(A+\sigma_{k}\right) w_{k}$
then apply multi-source multi-shift algorithm

results: approximate eigenmodes

- random 16^{4} lattice
- preconditioned asqtad operator $\left(m_{k}^{2}-D_{e o} D_{o e}\right) x_{k}=b$
- b: point source
- final $|r|^{2}=1 e-6$
- starting from approximate low modes (smallest approximate eigenvalue $>4 \lambda_{\text {min }}$)
- $\mathrm{m}_{\mathrm{k}}=\mathrm{m}_{1} \times \mathrm{d}^{(\mathrm{k}-1)}$
- all work in double precision

results: approximate eigenmodes

m1	d			$\mathrm{n}=2$	$\mathrm{n}=3$		$\mathrm{n}=5$	
0.010	2	665	626 (1.4e+00)	650 (4.9e+06))	693 (2.0e+18)	705 (2.5e+22)	8 (21
0.010	$\sqrt{2}$	665	626 (1.4e+00)	657 (1.2e	700 (3.4e+14)	740 (3.4e+21)	772	O78 (7.5e+33
. 005	2	1328	1136 (1.9e+00)	11	24	1280		
0.005	$\sqrt{2}$	1328	1136 (1.9e+0)	1200 (2.9	$1288(1.2 e+17)$	1369 (1.8e+25)	946 (7.9e+32)	
0.002	2	3309	2157 (2.6	226	$2402(3.2 e+18)$	2539 (3.3e+26)	4776 (2.4e	7549
0.002	$\sqrt{2}$	3309	2157 (2.6e+0)	2291 (5.3	2479 (3	3339		
0.001	2	65	3627 (2.9		4028			
0.001	$\sqrt{ } 2$	65	3627 (2.9e+0)	380	409	8618 (1	(4	

- number of iterations (starting |r| ${ }^{2}$)
- small increase in iterations for more masses or smaller spacings
- still breaks down for more/smaller shifts due to needed residual reduction being too large

extensions

- residuals don't have to be same, only collinear $b_{k}-\left(A+\sigma_{k}\right) y_{k}=\alpha_{k} r$, for $k=1$..n
- may help when restarting from certain Krylov methods
- can also use higher powers of A in y_{k}
- may need to actually project higher modes from residual to get large reduction

conclusions

- algorithm for solving systems with multiple sources each with a different shift
- can be applied to provide initial guesses to multi-shift solvers
- initial residuals are large, but convergence is still faster
- breaks down at some point when going to more and/or smaller shifts
- need to find ways to reduce residual while preserving improvement in iterations

