Initial guesses for multi-shift solvers

James Osborn Argonne National Lab

Lattice 2008 July 14 College of William and Mary

Initial guesses for multi-shift solvers

- multi-shift solvers
- method for initial guess
- multi-source multi-shift solvers
- results
- extensions

multiple shift systems

solve system of linear equations
(A+σ₁) x₁ = b

$$(A+\sigma_{2}) x_{2} = b$$

(A is matrix and σ constant (times identity))

- occur frequently lattice QCD
 - multiple masses
 - rational function approximation

multi-shift solvers

- typical solved with a Krylov method (CG)
- share same Krylov space {b, Ab, A²b, ...}
- can be solved simultaneously with same number of matrix-vector products as worst conditioned equation
 - [QMR: R. W. Freund (1993), MR: U. Glässner, et al. (1996), BiCG: A. Boriçi (1996), CG: B. Jegerlehner (1996)]

initial guesses

- want to use prior knowledge to reduce number of iterations
 - restarting solver from approximate solutions
 - projecting approximate low eigenmodes
 - solving similar equations
 - small changes in b
 - small changes in A (chronological inverter [R. Brower, et al. (1995)])

initial guesses

given initial guesses y_k, construct

$$r_{1} = b - (A + \sigma_{1}) y_{1}$$

 $r_{2} = b - (A + \sigma_{2}) y_{2}$

want to solve (A+ σ_1) $z_1 = r_1$ (A+ σ_2) $z_2 = r_2$

- right hand sides (r_k) in general are not the same
- no longer share a Krylov space

James Osborn, Lattice 2008

- - -

initial guesses

can choose (for 2 shifts)

$$y_{1} = (A + \sigma_{2}) W$$

 $y_{2} = (A + \sigma_{1}) W$

• for some w, then $r_1 = r_2 = b - (A + \sigma_1) (A + \sigma_2) w$

right hand sides are now the same

approximate solutions

- given approximate solutions $v_1 \approx (A + \sigma_1)^{-1} b$, $R_1 = b - (A + \sigma_1) v_1$ $v_2 \approx (A + \sigma_2)^{-1} b$, $R_2 = b - (A + \sigma_2) v_2$
- then

w =
$$(v_1 - v_2)/(\sigma_2 - \sigma_1) \approx [(A + \sigma_1)(A + \sigma_2)]^{-1} b$$

$$r_1 = r_2 = [(A + \sigma_2)R_1 - (A + \sigma_1)R_2] / (\sigma_2 - \sigma_1)$$

 if v₁,v₂ were exact solutions then restart residual would be zero

two-source two-shift solver [M. Clark, thesis (2006)]

- to solve $(A+\sigma_1) x_1 = b_1$ $(A+\sigma_2) x_2 = b_2$
- choose "guesses" y_k such that: $b_1 - (A + \sigma_1) y_1 = b_2 - (A + \sigma_2) y_2$

$$\rightarrow y_1 = y_2 = (b_2 - b_1)/(\sigma_2 - \sigma_1)$$

• equivalent to previous slide for $b_k = R_k$

multi-source multi-shift solver

• extension to n equations: (A+ σ_k) $x_k = b_k$, for k=1..n

choose y_k such that

$$b_k - (A+\sigma_k) y_k = r$$
, for k=1..n

set

$$y_k = \sum_{i=0}^{n-2} A^i Z_{k,i}$$

equate powers of A and solve for z_{k,i} in terms of b's

James Osborn, Lattice 2008

initial guesses: spacial case of multi-source multi-shift solver

• for
$$b_k = b - (A + \sigma_k) v_k$$

• equivalent to setting $y_1 = (A + \sigma_2)(A + \sigma_3) \dots (A + \sigma_n) w$ $y_2 = (A + \sigma_1) (A + \sigma_3) \dots (A + \sigma_n) w$

$$y_n = (A + \sigma_1)(A + \sigma_2) \dots (A + \sigma_{n-1})$$
 w

• for some $w \in \text{span}(v_k)$, with common residual $r = b - (A + \sigma_1)(A + \sigma_2)...(A + \sigma_n) w$

results: approximate solutions

- random 32⁴ lattice
- preconditioned asqtad operator (m_k² – D_{eo}D_{oe}) x_k = b
- b: point source
- final |r|² = 1e-6
- starting from solutions with $|r|^2 < 1e-3$ $(|r_k|^2 < 1e-6$ for k>2)
- $m_k = m_1 \times d^{(k-1)}$
- all work in double precision

James Osborn, Lattice 2008

results: approximate solutions

m1	d	no guess	n=1	n=2	n=3	n=4	n=5	n=6
0.010	2	683	334 (9.9e-04)	445 (3.6e+04)	488 (1.1e+11)	509 (2.0e+16)	518 (2.5e+20)	523 (2.1e+23)
0.010	√2	683	334 (9.9e-04)	489 (2.3e+05)	575 (1.4e+13)	635 (2.0e+20)	677 (6.7e+26)	985 (5.6e+32)
0.005	2	1365	666 (9.9e-04)	892 (6.0e+05)	978 (2.9e+13)	1018 (8.9e+19)	1039 (1.8e+25)	1214 (2.3e+29)
0.005	√2	1365	666 (9.9e-04)	977 (3.8e+06)	1151 (3.8e+15)	1272 (8.8e+23)	1761 (4.8e+31)	3066 (6.6e+38)
0.002	2	3417	1668 (1.0e-03)	2228 (2.3e+07)	2445 (4.3e+16)	2554 (5.2e+24)	3965 (4.1e+31)	6723 (2.0e+37)
0.002	√2	3417	1668 (1.0e-03)	2445 (1.5e+08)	2885 (5.8e+18)	3246 (5.1e+28)	7210 (1.1e+38)	10000 (5.8e+46)
0.001	2	6830	3353 (1.0e-03)	4464 (3.6e+08)	4903 (1.1e+19)	5328 (2.0e+28)	10000 (2.4e+36)	10000 (1.8e+43)
0.001	√2	6830	3353 (1.0e-03)	4886 (2.3e+09)	5764 (1.4e+21)	8949 (1.9e+32)	10000 (6.4e+42)	10000 (5.2e+52)

- number of iterations (starting |r|²)
- even with large starting residual, needs fewer iterations than no guess
- breaks down for more/smaller shifts due to needed residual reduction being too large

choosing guesses

- general strategies for choosing guesses
 - globally optimize for w

$$r = b - (A + \sigma_1)(A + \sigma_2)...(A + \sigma_n) w$$

- minimize norm of residual
- project out from residual
- individually optimize $r_{k} = b - (A + \sigma_{k}) w_{k}$

then apply multi-source multi-shift algorithm

results: approximate eigenmodes

- random 16⁴ lattice
- preconditioned asqtad operator (m_k² – D_{eo}D_{oe}) x_k = b
- b: point source
- final |r|² = 1e-6
- starting from approximate low modes (smallest approximate eigenvalue > 4 λ_{min})
- $m_k = m_1 \times d^{(k-1)}$
- all work in double precision

James Osborn, Lattice 2008

results: approximate eigenmodes

m1	d	no guess	n=1	n=2	n=3	n=4	n=5	n=6
0.010	2	665	626 (1.4e+00)	650 (4.9e+06)	677 (1.1e+13)	693 (2.0e+18)	705 (2.5e+22)	708 (2.1e+25)
0.010	√2	665	626 (1.4e+00)	657 (1.2e+07)	700 (3.4e+14)	740 (3.4e+21)	772 (9.8e+27)	1078 (7.5e+33)
0.005	2	1328	1136 (1.9e+00)	1185 (1.2e+08)	1241 (4.2e+15)	1280 (1.2e+22)	1303 (2.3e+27)	1605 (3.0e+31)
0.005	√2	1328	1136 (1.9e+00)	1200 (2.9e+08)	1288 (1.2e+17)	1369 (1.8e+25)	1946 (7.9e+32)	3263 (9.5e+39)
0.002	2	3309	2157 (2.6e+00)	2268 (3.1e+09)	2402 (3.2e+18)	2539 (3.3e+26)	4776 (2.4e+33)	7549 (1.2e+39)
0.002	√2	3309	2157 (2.6e+00)	2291 (5.3e+09)	2479 (3.9e+19)	3339 (1.6e+29)	7274 (2.5e+38)	10000 (1.1e+47)
0.001	2	6563	3627 (2.9e+00)	3800 (1.3e+10)	4028 (1.4e+20)	5969 (2.2e+29)	10000 (2.6e+37)	10000 (2.1e+44)
0.001	√2	6563	3627 (2.9e+00)	3805 (1.9e+10)	4099 (1.9e+21)	8618 (1.6e+32)	10000 (4.4e+42)	10000 (3.5e+52)

- number of iterations (starting |r|²)
- small increase in iterations for more masses or smaller spacings
- still breaks down for more/smaller shifts due to needed residual reduction being too large

extensions

- residuals don't have to be same, only collinear $b_k (A + \sigma_k) y_k = \alpha_k r$, for k=1..n
 - may help when restarting from certain Krylov methods
- can also use higher powers of A in y_k
- may need to actually project higher modes from residual to get large reduction

conclusions

- algorithm for solving systems with multiple sources each with a different shift
- can be applied to provide initial guesses to multi-shift solvers
- initial residuals are large, but convergence is still faster
- breaks down at some point when going to more and/or smaller shifts
- need to find ways to reduce residual while preserving improvement in iterations