Neutral Kaon Mixing beyond the Standard Model with Domain Wall Fermions

Jan Wennekers

for the RBC and UKQCD collaborations

Lattice 2008 Williamsburg

3 Matrix Elements

2) Non-perturbative Renormalisation

3 Matrix Elements

- In the Standard Model: effective operator with (V – A)(V – A) structure from integrating out Ws in box diagram
- FCNCs from theories beyond the SM constrained to be small
- model independent studies use the mass insertion approximation
- Lattice QCD can provide matrix elements for a full operator basis

SM: W and t in box diagram

- In the Standard Model: effective operator with (V – A)(V – A) structure from integrating out Ws in box diagram
- FCNCs from theories beyond the SM constrained to be small
- model independent studies use the mass insertion approximation
- Lattice QCD can provide matrix elements for a full operator basis

SUSY: \tilde{g} and \tilde{q} in box diagram

Operators and RG running

operator basis

$$\begin{aligned} \mathsf{Q}_1 &= \overline{\mathsf{s}}^a \ \gamma_\mu \mathsf{P}_L \ d^a \overline{\mathsf{s}}^b \ \gamma^\mu \mathsf{P}_L \ d^b \\ \mathsf{Q}_2 &= \overline{\mathsf{s}}^a \ \gamma_\mu \mathsf{P}_L \ d^a \overline{\mathsf{s}}^b \ \gamma^\mu \mathsf{P}_R \ d^b \\ \mathsf{Q}_3 &= \overline{\mathsf{s}}^a \ \mathsf{P}_L \ d^a \overline{\mathsf{s}}^b \ \mathsf{P}_R \ d^b \\ \mathsf{Q}_4 &= \overline{\mathsf{s}}^a \ \mathsf{P}_L d^a \overline{\mathsf{s}}^b \ \mathsf{P}_L \ d^b \\ \mathsf{Q}_5 &= \overline{\mathsf{s}}^a \ \sigma_{\mu\nu} \mathsf{P}_L \ d^a \overline{\mathsf{s}}^b \ \sigma^{\mu\nu} \mathsf{P}_L \ d^b \end{aligned}$$

related to "SUSY" basis by Fierz identities

ontinuum QCD: only Wilson coefficients of Q₂, Q₃ and Q₄, Q₅ mix

$$\mu \frac{d}{d\mu} \vec{C}(\mu) = \begin{pmatrix} \gamma_1 & & \\ & \gamma_{22} & \gamma_{23} & \\ & \gamma_{32} & \gamma_{33} & \\ & & & \gamma_{44} & \gamma_{45} \\ & & & \gamma_{54} & \gamma_{55} \end{pmatrix} \vec{C}(\mu)$$

operator basis

$$\begin{aligned} \mathsf{Q}_1 &= \overline{\mathsf{s}}^a \; \gamma_\mu \mathsf{P}_L \; d^a \overline{\mathsf{s}}^b \; \gamma^\mu \mathsf{P}_L \; d^b \\ \mathsf{Q}_2 &= \overline{\mathsf{s}}^a \; \gamma_\mu \mathsf{P}_L \; d^a \overline{\mathsf{s}}^b \; \gamma^\mu \mathsf{P}_R \; d^b \\ \mathsf{Q}_3 &= \overline{\mathsf{s}}^a \; \mathsf{P}_L \; d^a \overline{\mathsf{s}}^b \; \mathsf{P}_R \; d^b \\ \mathsf{Q}_4 &= \overline{\mathsf{s}}^a \; \mathsf{P}_L d^a \overline{\mathsf{s}}^b \; \mathsf{P}_L \; d^b \\ \mathsf{Q}_5 &= \overline{\mathsf{s}}^a \; \sigma_{\mu\nu} \mathsf{P}_L \; d^a \overline{\mathsf{s}}^b \; \sigma^{\mu\nu} \mathsf{P}_L \; d^b \end{aligned}$$

- related to "SUSY" basis by Fierz identities
- continuum QCD: only Wilson coefficients of Q₂, Q₃ and Q₄, Q₅ mix
- chiral symmetry essential for reduced mixing
- Domain Wall Fermions well suited for this problem

2 Non-perturbative Renormalisation

3) Matrix Elements

Summary

• 5×5 matrix needed to renormalise operator basis

 $\Lambda_{ij} \equiv (\Gamma_i)^{ABCD}_{\alpha\beta\gamma\delta}(P_j)^{BADC}_{\beta\alpha\delta\gamma}$

- Γ amputated four-point vertex function, P projector
- renormalisation condition

$$\frac{1}{Z_q^2} Z(\mu) = \Lambda_{\text{tree}} \cdot \Lambda^{-1}(p^2 = \mu^2)$$

• trade Z_q for Z_A :

$$\frac{1}{Z_A^2}Z = \Lambda_{\text{tree}}\cdot\Lambda^{-1}/\Lambda_A$$

Gauge-fixed Momentum Sources

- Landau gauge fixed configurations
- source: 4-d volume source with phase factor $e^{2\pi i p \cdot x}$
- vertices calculated at sink position
 - much smaller statistical errors than point sources
 - small number of momenta
 - different O((ap)⁴) errors for momenta with same p² ⇒ Dirk Brömmel's talk on Friday afternoon

larger p² dependence for some operators

Mixing Matrix

block diagonal structure like in the continuum

block diagonal structure like in the continuum

- difference between $\Lambda_A(p^2)$ and $\Lambda_V(p^2)$ leads to systematic error
- way out: RI-MOM with non-exceptional momentum configurations
 - \Rightarrow Chris Kelly's talk in a few minutes
 - ⇒ Yasumich Aoki's talk on Wednesday afternoon

Removing the Perturbative Running

- RG evolution of the Wilson coefficients, $\vec{C}(\mu_2) = U(\mu_2, \mu_1)\vec{C}(\mu_1)$
- U depends on anomalous dimension (matrix) γ , known at NLO

[Ciuchini et al 1998, Buras et al 2001]

Non-perturbative Renormalisation

3 Matrix Elements

Summary

- Iwasaki gauge action with $\beta = 2.25$, Domain Wall fermion action
- $32^3 \times 64 \times 16$ lattices (new!)
- lattice spacing: $a^{-1} = 2.42(4) \text{ GeV} \times \frac{0.47 \text{ fm}}{l_0}$ (statistical error only)
- *m*_{res} = 0.00066(2) (preliminary)

m	ms	m_{π}	Renorm.	Matrix Elements	
0.004	0.03	\sim 300 MeV	0.004	0.002, 0.004, 0.006, 0.008	
0.006	0.03	\sim 365 MeV	0.006	"	
0.008	0.03	\sim 420 MeV	(0.008)	17	

- gauge-fixed wall sources
- use of fermionic boundary conditions: p + a at t = 0, p a at t = "64"
- currently O(100) measurements for each mass, will go up to 200
- statistical errors O(1%) at lowest kaon mass

- gauge-fixed wall sources
- use of fermionic boundary conditions: p + a at t = 0, p a at t = "64"
- currently O(100) measurements for each mass, will go up to 200
- statistical errors O(1%) at lowest kaon mass

- gauge-fixed wall sources
- use of fermionic boundary conditions: p + a at t = 0, p a at t = "64"
- currently O(100) measurements for each mass, will go up to 200
- statistical errors O(1%) at lowest kaon mass

- gauge-fixed wall sources
- use of fermionic boundary conditions: p + a at t = 0, p a at t = "64"
- currently O(100) measurements for each mass, will go up to 200
- statistical errors O(1%) at lowest kaon mass

Mass Dependence

• B_K style normalisation quark mass dependent for B_2 - B_5

$$ig\langle ar{\mathcal{K}} | \mathsf{Q}_i | \mathcal{K} ig
angle = N_i m_{\mathcal{K}}^2 F_{\mathcal{K}}^2 B_i, \quad N_i = rac{8}{3}, -rac{4}{3}R, 2R, rac{5}{3}R, -4R$$
 $R = \left(rac{m_{\mathcal{K}}}{m_{\mathrm{s}}^r + m_d^r}
ight)^2$

Mass Dependence

• B_K style normalisation quark mass dependent for B₂ - B₅

$$\langle \bar{K} | Q_i | K \rangle = N_i m_K^2 F_K^2 B_i, \quad N_i = \frac{8}{3}, -\frac{4}{3}R, 2R, \frac{5}{3}R, -4R$$
$$R = \left(\frac{m_K}{m_s^r + m_d^r}\right)^2$$

- plan: use partially quenched Heavy Meson ChPT (SU(2))
- first fix LO LECs from fits in the pion sector
- treat the kaon as heavy relative to the pion

Motivation

2 Non-perturbative Renormalisation

3 Matrix Elements

- status report on project about neutral kaon mixing beyond the SM
- 2+1 flavour DWF with small quark masses and very small chiral symmetry breaking
- renormalisation of the chosen operator basis in the RI-MOM scheme
- reduced operator mixing due to (lattice) chiral symmetry
- preliminary results on the matrix elements from the new 32³ ensembles
- analysis in framework of partially quenched ChPT is on the way
- scaling study with existing coarser DWF lattices planned