Domain Wall Fermion Lattice Super-Yang Mills

Joel Giedt

Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute

SUSY promo

Weak scale SUSY has a lot going for it: gauge coupl unif. / hierarchy prob. / CDM candidate / logical spacetime symm. extension / flat dir.'s -> baryogensis / perturb. calculable TeV physics. / natural consequence of string/M th. / custodial SU(2) / severely constrained by rare processes / elegant renormalization / light higgs

Rubber meets the road

- Of course it has drawbacks too. SUSY has to be broken somehow.
- This is encoded in the "soft Lagrangian", introducing a vast parameter space, with generic points absolutely forbidden [EDM's, FCNC's].
- The search, for many years, has been for mechanisms of SUSY-breaking that "naturally" lead to a "nice" soft Lagrangian.
- (This is getting progressively harder as experiments nibble away at parameter space in simpler scenarios.)

Strong supersymmetric theories

- The models for SUSY breaking generally involve nonperturbative behavior of supersymmetric gauge theories.
- Thus, to thoroughly study the relevant nonperturbative features ⇒ study strong SUSY.
- Obvious tool to include: LFT

Lattice SUSY

- However, lattice SUSY has problems.
- Lattice breaks SUSY: discretization errors.
- Divergences in quantum field theories ⇒ errors can be dangerously amplified:

$$\epsilon \times \infty = \infty.$$
 (1)

For example:

$$QS = a^2 \mathcal{O}_S, \quad \langle \mathcal{O}_S \mathcal{O}_X \rangle = \mathcal{O}(1/a^2)$$
 (2)

 $\Rightarrow \mathcal{O}(\ln a)$ violation of SUSY.

Various tacks

- For a few years now, I have studied ways that exact lattice symmetries might be used to overcome this problem, with many encouraging results.
- We are making steady progress toward full-scale simulation of realistic models.
- Today I'll tell you about a supersymmetric model that we can study w/o fear, due to lattice chiral symmetries.
- Some emerging results of very-large-scale simulations will be presented.

$\mathcal{N} = 1$ 4d SYM w/ chiral fermions

- From [Curci, Veneziano 86] we know that $\mathcal{N}=1$ 4d SYM with Ginsparg-Wilson fermions require no counterterms.
- Overlap-Dirac was proposed [Narayanan, Neuberger 95] and sketched [Maru, Nishimura 97].
- But LO simulation studies, such as glueball spectra, have yet to be attempted.

$\mathcal{N}=1$ 4d SYM w/ chiral fermions

Another type of GW fermion is:

- Domain Wall Fermions (DWF) [Kaplan 92] + improvements [Shamir 93].
- Proposed for LSYM [Nishimura 97] [Neuberger 98] [Kaplan, Schmaltz 99]
- Briefly studied [Fleming, Kogut, Vranas 00].

Gluino condensation

- $lue{}$ They studied the condensate vs. L_s
- NB: all the good ideas for spontaneous SUSY-breaking (that I know of) involve gluino condensation:

$$\langle \bar{\lambda} \lambda \rangle \neq 0$$
 (3)

Gluino condensation

Essentially, 4 types of evidence from continuum techniques:

1. VY/chiral ring

[Veneziano, Yankielowicz 82; Cachazo, Douglas, Seiberg, Witten 02]

- strong instanton
 [Novikov, Shifman, Vainshtein, Zakharov 83; Rossi,
 Veneziano 84]
- 3. weak instanton [Affleck, Dine, Seiberg 83]
- 4. $\mathbb{R}^3 \times S^1$ [Davies, Hollowood, Khoze, Mattis 99]

A 5th pathway?

Seems to me, the above approaches are rather indirect.

- Lattice: direct, brute force.
- Simulate at various *a*, extrapolate to continuum.
- Extrapolation to chiral limit $m_{\lambda} = 0$.
- Nonperturbative renormalization.

Chiral critical point

- Anomaly, no pions. Z_{2N_c} remains.
- $m_{\lambda}=0$, spontaneous breaking of $Z_{2N_{c}}$ symmetry occurs.
- N_c vacua: theory picks one.
- Old-fashioned lattice fermions (Wilson) broke this symmetry to avoid fermion doublers.
- Due to additive renormalization

$$m_{\lambda,R} = \sqrt{Z} m_{\lambda,0} - \delta m_{\lambda} \tag{4}$$

it was impossible to say *a priori* where $m_{\lambda .R} = 0$ really was.

Wilson fermion approach

- Perturbation theory won't tell us $\sqrt{Z}, \delta m_{\lambda}$.
- The old simulations (Munster-DESY-Roma) tried various masses $m_{\lambda,0}$.
- Very costly (scan, renorm., op. mixing, coding).
- Did not generate enough data to do $a \rightarrow 0$ extrapolations. Only 1 lattice spacing.
- Also: sign problem near critical point.

First foray into 5th dimension

- The old DWF simulations [Fleming, Kogut, Vranas 00] avoided fine-tuning. But sim.'s costly ==> small lattices.
- Did not generate enough data to do $a \rightarrow 0$ extrapolations. Only 1 lattice spacing.
- Small lattice ==> far from continuum. SUSY?

DWF-LSYM @ CCNI

- With collab.'s: Rich Brower (Boston U), Simon Catterall (Syracuse U), George Fleming (Yale U), Pavlos Vranas (LLNL).
- DWF simulations using
 - the best modern code (CPS) and
 - one of the world's fastest computers (CCNI).

A marriage made in heaven: CPS + CCNI

SciDAC Layers and software module arch.

(USQCD, esp.

Columbia's CPS)

CCNI BlueGene/L's

(RPI, NYS, IBM)

DWF-LSYM @ CCNI

- Minor hack of CPS code: modify 15 files out of 1800. (CPS = 5MB of C++ code.)
- Currently using 1 to 2 racks: each 5.6 Tflop/s. 9% efficiency ==> 0.75 Tflop/s actual compute rate.
- We will be able to nail the condensate, extrapolate to the continuum, within the year.

Early results & comparison

L_s	$\langle ar{\lambda} \lambda angle$ (here)	$\langle \bar{\lambda} \lambda \rangle$ (FKV)	notes
16	0.00700(6)	0.00694(7)	
24	0.00507(8)	0.00516(6)	
48	0.003134(20)	_	
∞	<u>—</u>	0.00432(22)	method III
∞	0.0012(2)	<u>—</u>	method IV

 L_s cases simulated for spacetime volume 8^4 . Also shown: $L_s \to \infty$ extrapolations of FKV ($L_s = 12, 16, 20, 24$). Take-away: very large L_s important to $L_s \to \infty$ extrapolation.

The new extrapolation

 $\langle \bar{\lambda} \lambda \rangle$ vs. $1/L_s$ for 8^4

Continuum limit

Figure 1: Condensate vs. β for $16^3 \times 32$ lattice with

$$L_s = 16.$$

Chiral limit

Figure 2: Condensate vs. m_{res} .

Running coupling

Define $\beta = 4/g^2$. Then 2-loop SUSY RGE's ==>

$$a\Lambda_{SYM} \sim \left(\frac{3}{2\pi^2\beta}\right)^{-1/3} \exp\left(-\frac{\pi^2\beta}{3}\right)$$
 (5)

Correct scaling

Creutz ratios for $16^3 \times 32 \times 16$ lattice. The dashed line indicates the 2-loop prediction for the dependence $a^2(\beta)$, obtained from (5).

LSYM Conclusions

- We are well or track to obtain a first ever continuum extrapolation of $\langle \bar{\lambda} \lambda \rangle$ for SYM.
- If we show $\langle \bar{\lambda} \lambda \rangle$ nonzero, it will provide strong evidence by a 4th method.
- Complimentary to VY & Cachazo et al., Affleck-Dine-Seiberg, and the NSVZ+AMRV+Hollowood et al. instanton results.

LSYM Conclusions

- Benchmarks for DWF-LSYM simulation, "phase" diagram of lattice theory.
- Spectrum calculations will follow: continuum limit never obtained before.
- Will attract the attention of HEP community, stimulate strong interest in what is happening at Rensselaer, using CCNI.