Nucleon Generalized Form Factors with Domain Wall
 Fermions on an Asqtad Sea

J.W. Negele
For the LHP Collboration

Lattice 2008
Williamsburg
July 18, 2008

Collaborators

MIT
J. Bratt
M. F. Lin
H. Meyer
A. Pochinsky
M. Procura
S. Syritsyn

JLab
R. Edwards
D. Richards

New Mexico State
M. Engelhardt

William \& Mary, JLab
K. Orginos

Yale
G. Fleming
T. U. Munchen Ph. Haegler B. Musch

DESY Zeuthen
D. Renner

Nat.Taiwan U.
W. Schroers

Outline

\square Physics Motivation
\square Mixed Action Calculation
\square Chiral Extrapolation
\square Origin of the Nucleon Spin
\square Comparison with Phenomenology
\square Summary and Outlook

Physics Motivation

\square Generalized parton distributions probe the light cone quark distribution $q\left(x, r_{\perp}\right)$ as a function of longitudinal momentum fraction x and transverse position r_{\perp}
\square Specify total quark contribution to nucleon spin
\square Reveal transverse structure of light cone wave function
\square Synergy with experiment
\square Experiment measures convolutions of GPD's
\square Lattice measures moments of GPD's

Gauge Invariant Decomposition of Nucleon Spin

$$
\begin{aligned}
& \text { X.Ji PRL 78,610 (1997) } \\
& J^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x\left[T^{\alpha \nu} x^{\mu}-T^{\alpha \mu} x^{\nu}\right]=J_{q}^{i}+J_{g}^{i} \\
& \vec{J}_{q}=\int d^{3} x \psi^{\dagger}\left[\vec{\gamma} \gamma_{5}+\vec{x} \times(-i \vec{D})\right] \psi \\
&=\frac{1}{2}\left[A_{20}\left(q^{2}=0\right)+B_{20}\left(q^{2}=0\right)\right] \\
& \vec{J}_{g}=\int d^{3} x[\vec{x} \times(\vec{E} \times \vec{B})] \\
& \neq \Delta g
\end{aligned}
$$

$\square \mathrm{A}_{20}$ and B_{20} are generalized form factors defined below
\square Cannot write J_{g} as sum of helicity and orbital contributions of local operators

Generalized form factors

$$
\begin{array}{rlr}
\mathcal{O}_{q}^{\left\{\mu_{1} \mu_{2} \ldots \mu_{n}\right\}} & =\bar{\psi}_{q} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots i D^{\left.\mu_{n}\right\}} \psi_{q} & \bar{P}=\frac{1}{2}\left(P^{\prime}+P\right) \\
\left\langle P^{\prime}\right| \mathcal{O}^{\mu_{1}}|P\rangle & =\left\langle\left\langle\gamma^{\mu_{1}}\right\rangle\right\rangle A_{10}(t) & \Delta=P^{\prime}-P \\
& +\frac{i}{2 m}\left\langle\left\langle\sigma^{\mu_{1} \alpha}\right\rangle\right\rangle \Delta_{\alpha} B_{10}(t), & t=\Delta^{2} \\
\left\langle P^{\prime}\right| \mathcal{O}^{\left\{\mu_{1} \mu_{2}\right\}}|P\rangle & =\bar{P}^{\left\{\mu_{1}\right.}\left\langle\left\langle\gamma^{\left.\mu_{2}\right\}}\right\rangle\right\rangle A_{20}(t) \\
& +\frac{i}{2 m} \bar{P}^{\left\{\mu_{1}\right.}\left\langle\left\langle\sigma^{\left.\mu_{2}\right\} \alpha}\right\rangle\right\rangle \Delta_{\alpha} B_{20}(t) \\
& +\frac{1}{m} \Delta^{\left\{\mu_{1}\right.} \Delta^{\left.\mu_{2}\right\}} C_{2}(t), \\
& +\frac{i}{2 m} \bar{P}^{\left\{\mu_{1}\right.} \bar{P}^{\mu_{2}}\left\langle\left\langle\sigma^{\left.\mu_{3}\right\} \alpha}\right\rangle\right\rangle \Delta_{\alpha} B_{30}(t) & \\
& +P^{\left\{\mu_{1}\right.} \Delta^{\mu_{2}}\left\langle\left\langle\gamma^{\left.\mu_{3}\right\}}\right\rangle\right\rangle \mathcal{O}_{32}(t) \\
& +\frac{i}{2 m} \Delta^{\left\{\mu_{1} \mu_{2} \mu_{3}\right\}}|P\rangle & \left.=\bar{P}^{\left\{\mu_{1}\right.} \bar{P}^{\mu_{2}}\left\langle\left\langle\gamma^{\left.\mu_{3}\right\}}\right\} \alpha\right\rangle\right\rangle \Delta_{\alpha} B_{32}(t),
\end{array}
$$

Limits and Sum Rules

\square Moments of parton distributions $\mathrm{t} \rightarrow 0$

$$
A_{n 0}=\int d x x^{n-1} q(x)
$$

\square Electromagnetic form factors

$$
A_{10}=F_{1}(t), \quad B_{10}=F_{2}(t)
$$

\square Total quark angular momentum

$$
J_{q}=\frac{1}{2}\left[A(0)_{20}+B(0)_{20}\right]
$$

\square Momentum sum rule

$$
1=A_{20, q}(0)+A_{20, g}(0)=\langle x\rangle_{q}+\langle x\rangle_{g}
$$

\square Nucleon spin sum rule

$$
\begin{aligned}
\frac{1}{2} & =\frac{1}{2}\left(A_{20, q}(0)+A_{20, g}(0)+B_{20, q}(0)+B_{20, g}(0)\right) \\
& =\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}
\end{aligned}
$$

Domain wall quarks on a staggered sea

$\square \mathcal{O}\left(a^{2}\right)$ Tadpole improved staggered sea quarks (Asqtad)
\square Economical entre to chiral regime
\square MILC 2+I flavor lattices with large L, small m_{π} publicly available
\square Domain wall valence quarks
\square Chiral symmetry to within controlled $m_{\text {res }}$
\square Avoids operator mixing
$\square \mathcal{O}\left(a^{2}\right)$
\square Conserved 5-d axial current facilitates renormalization
\square Mixed action ChPT Chen, O'Connell,Walker-Loud, arXiv: 0706.00035
\square One-loop results have contiuum chiral behavior with low energy constants containing perturbative a-dependent corrections

Statistics for hadron structure

\square Signal to noise degrades as pion mass decreases

$$
\begin{aligned}
\frac{\text { Signal }}{\text { Noise }} & =\frac{\langle J(t) J(0)\rangle}{\frac{1}{\sqrt{N}} \sqrt{\left.\left.\langle | J(t) J(0)\right|^{2}\right\rangle-(\langle J(t) J(0)\rangle)^{2}}} \\
& \sim \frac{A e^{-M_{N} t}}{\frac{1}{\sqrt{N}} \sqrt{B e^{-3 m_{\pi} t}-C e^{-2 M_{N} t}}} \\
& \sim \sqrt{N} D e^{-\left(M_{N}-\frac{3}{2} m_{\pi}\right)}
\end{aligned}
$$

\square Due to different overlap of nucleon and 3 pions also have volume dependence: \sqrt{V}
\square Kostas Orginos analyzed signal/noise correlation functions for mixed action data

Required Measurements

Measurements required for 3% accuracy at $\mathrm{T}=10$
May need significantly more

Numerical calculations

\square MILC Asqtad configurations $\mathrm{N}_{\mathrm{F}}=2+\mathrm{I}$, a $=0.125 \mathrm{fm}$
\square Domain wall valence quarks
$\square \mathrm{L}_{s}=16, \quad \mathrm{M}_{5}=1.7$
\square Valence quark mass tuned to Asqtad Goldstone pion mass.
\square Recent improvement: Factor 8 increase in \# measurements

m_{π}	\# configs	Vol	$\mathrm{L}(\mathrm{fm})$	\# measurements	
758	423	20^{3}	2.5	423	
688	348	20^{3}	2.5	348	
597	561	20^{3}	2.5	561	
495	477	20^{3}	2.5	477	
356	628	20^{3}	2.5	628	5024
353	274	28^{3}	3.5	274	2192
293	464	20^{3}	2.5		3712

Improvements in Measurements

$\square 4$ sets of forward propagators per configuration • shifted spatially
\square Coherent sequential propagators for 4 nucleon sinks \bullet and 4 antinucleon sinks
\square Save factor 4 in time
\square Gauge averaging cancels contributions from neighbors
\square Shorter source sink separation
\square Overall error reduction ~ factor 4

Statistical independence of measurements

Jackknife binning of correlation functions and matrix elements
Sergey Syritsyn

Perturbative renormalization

$$
O_{i}^{\overline{M S}}\left(Q^{2}\right)=\sum_{j}\left(\delta_{i j}+\frac{g_{0}^{2}}{16 \pi^{2}} \frac{N_{c}^{2}-1}{2 N_{c}}\left(\gamma_{i j}^{\overline{M S}} \log \left(Q^{2} a^{2}\right)-\left(B_{i j}^{L A T T}-B_{i j}^{\overline{M S}}\right)\right)\right) \cdot O_{j}^{L A T T}\left(a^{2}\right)
$$

HYP smeared domain wall fermions - B. Bistrovic

operator	$H(4)$	HYP
$\bar{q}\left[\gamma_{5}\right] q$	$1_{1}^{ \pm}$	0.981
$\bar{q}\left[\gamma_{5}\right] \gamma_{\mu} q$	4_{4}^{\mp}	0.976
$\left.\bar{q}\left[\gamma_{5}\right]\right]_{\mu v} q$	6_{1}^{\mp}	0.992
$\bar{q}\left[\gamma_{5}\right]_{\{\mu} D_{v\}} q$	6_{3}^{1}	0.979
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v\}} q$	$3_{1}^{ \pm}$	0.975
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{\nu} D_{\alpha \alpha} q$	8_{1}^{\mp}	0.988
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha\}} q$	mixing	1.88×10^{-3}
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha\}} q$	4^{\mp}	0.987
$\bar{q}\left[\gamma_{5}\right] \gamma_{\{\mu} D_{v} D_{\alpha} D_{\beta\}} q$	$2_{1}^{ \pm}$	0.993
$\bar{q}\left[\gamma_{5}\right] \sigma_{\mu\{v} D_{\alpha\}} q$	$8_{1}^{ \pm}$	0.994
$\bar{q}\left[\gamma_{5}\right] \gamma_{[\mu} D_{v]} q$	6_{1}^{\mp}	0.982
$\bar{q}\left[\gamma_{5}\right] \gamma_{[\mu} D_{\{v]} D_{\alpha\}} q$	$8_{1}^{ \pm}$	0.959

Overdetermined system for form factors

Calculate ratio

$$
R O\left(\tau, P^{\prime}, P\right)=\frac{C^{3 \mathrm{pt}}\left(\tau, P^{\prime}, P\right)}{C^{2 \mathrm{pt}}\left(\tau_{\text {snk }}, P^{\prime}\right)}\left[\frac{C^{2 \mathrm{pt}}\left(\tau_{\text {smk }}-\tau+\tau_{\text {src }}, P\right) C^{2 \mathrm{pt}}\left(\tau, P^{\prime}\right) C^{2 \mathrm{pt}}\left(\tau_{\text {snk }}, P^{\prime}\right)}{C^{2 \mathrm{pt}}\left(\tau_{\text {snk }}-\tau+\tau_{\text {sre }}, P^{\prime}\right) C^{2 \mathrm{pt}}(\tau, P) C^{2 \mathrm{pt}}\left(\tau_{\text {snk }}, P\right)}\right]^{1 / 2}
$$

Schematic form

$$
\begin{aligned}
\left\langle\mathcal{O}_{i}^{\text {cont }}\right\rangle & =\sum_{j} a_{i j} \mathcal{F}_{j} \\
\left\langle\mathcal{O}_{i}^{\text {cont }}\right\rangle & =\sqrt{E^{\prime} E} \sum_{j} Z_{i j} \bar{R}_{j} \\
\bar{R}_{i} & =\frac{1}{\sqrt{E^{\prime} E}} \sum_{j k} Z_{i j}^{-1} a_{j k} \mathcal{F}_{k} \\
& \equiv \sum_{j} a_{i j}^{\prime} \mathcal{F}_{j}
\end{aligned}
$$

Chiral extrapolation of GPD's

Haegler et al, LHPC, Phys Rev D77, 094502 (2008)
\square Fundamental problem - large pion masses
\square Covariant Baryon Chiral Perturbation theory gives consistent fit to matrix elements of twist-2 operators for wide range of masses
(Dorati, Gail, Hemmert, Nucl Phys A798, 96 (2008)
\square HBChPT expands in $\epsilon=\left\{\frac{m_{\pi}}{\Lambda_{\chi}}, \frac{p}{\Lambda_{\chi}}, \frac{m_{\pi}}{M_{N}^{0}}, \frac{p}{M_{N}^{0}}\right\}$

$$
\Lambda_{\chi}=4 \pi f_{\pi} \sim 1.17 \mathrm{GeV}, \quad M_{N}^{0} \sim 890 \mathrm{MeV}
$$

\square CBChPT resums all orders of $\left(\frac{1}{M_{N}^{0}}\right)^{m}$

Chiral extrapolation of $\langle x\rangle_{q}^{u-d}=A_{20}^{u-d}(t=0)$

Chiral extrapolation O(p^{2}) CBChPT (Dorati, et al, NP A798, 96 (2008) Global fit to A, B, C with 9 fit parameters

$$
A_{20}^{u-d}\left(t, m_{\pi}\right)=A_{20}^{0, u-d}\left(f_{A}\left(m_{\pi}\right)+\frac{g_{A}^{2}}{192 \pi^{2} f_{\pi}^{2}} h_{A}\left(t, m_{\pi}\right)\right)+\widetilde{A}_{20}^{0, u-d} j_{A}\left(m_{\pi}\right)+A_{20}^{m_{\pi}, u-d} m_{\pi}^{2}+A_{20}^{t} t
$$

$$
\sim a\left(1-\frac{3 g_{A}^{2}+1}{4 \pi f_{\pi}^{2}} m_{\pi}^{2} \ln m_{\pi}^{2}\right)+b m_{\pi}^{2} \ldots
$$

Chiral extrapolation of <x>

Chiral extrapolation of $\langle x\rangle_{q}^{u+d}=A_{20}^{u+d}(t=0)$

Chiral extrapolation O(p^{2}) CBChPT (Dorati, Hemmert, et. al.)
Note: connected diagrams only

Chiral Extrapolation of $B_{20}^{u+d}\left(t, m_{\pi}\right)$

Chiral extrapolation $\mathrm{O}\left(\mathrm{p}^{2}\right)$ CBChPT $+\mathrm{O}\left(\mathrm{p}^{3}\right)$ corrections Note: connected diagrams only
(Dorati, et. al.)
$B_{20}^{u+d}\left(t, m_{\pi}\right)=A_{20}^{0, u+d} h_{B}^{u+d}\left(t, m_{\pi}\right)+\Delta B_{20}^{t, u+d}\left(t, m_{\pi}\right)+\frac{m_{N}\left(m_{\pi}\right)}{m_{N}}\left\{B_{20}^{0, u+d}++\delta_{B}^{t} t+\delta_{B}^{m_{\pi}} m_{\pi}^{2}\right\} \ldots$

Quark contributions to proton spin

Spin inventory for heavy quarks
Quark spin contribution $\quad \frac{1}{2} \Delta \Sigma=\frac{1}{2}\langle 1\rangle_{\Delta u+\Delta d} \sim \frac{1}{2} 0.682(18)$
Total quark contribution (spin plus orbital)

$$
J_{q}=\frac{1}{2}\left[A_{20}^{u+d}(0)+B_{20}^{u+d}(0)\right]=\frac{1}{2}\left[\langle x\rangle_{u+d}+B_{20}^{u+d}(0)\right] \quad \sim \frac{1}{2} 0.675(7)
$$

Spin Inventory
68\% quark spin 0% quark orbital 32% gluons

Quark contributions to the proton spin

Evolution of nonsinglet angular momentum

Nonsinglet J has simple evolution
Spin conserved, so large change in L

$$
L^{u-d}(t)+\frac{\Delta \Sigma^{u-d}}{2}=\left(\frac{t}{t_{0}}\right)^{-\frac{32}{81}}\left(L^{u-d}\left(t_{0}\right)+\frac{\Delta \Sigma^{u-d}}{2}\right) \quad t=\ln \left(\frac{Q^{2}}{\Lambda_{Q C D}^{2}}\right)
$$

First x moments:

$$
A_{20}, B_{20}, C_{20}
$$

Consistent with large N behavior [Goeke et.al.]

$$
\begin{aligned}
& \left|A_{20}^{u+d}\right|>\left|A_{20}^{u-d}\right| \\
& \left|B_{20}^{u-d}\right|>\left|B_{20}^{u+d}\right| \\
& \left|C_{20}^{u+d}\right|>\left|C_{20}^{u-d}\right|
\end{aligned}
$$

A_{20}, B_{20}, C_{20} Original Data

$A_{20}, B_{20}, C_{20} \quad$ New Data

$A_{20}, B_{20}, C_{20} \quad$ New Data

High statistics data for low masses

High statistics data for low masses

Quark contributions to the proton spin

Quark contributions to the proton spin

Comparison with Phenomenology

Ratios A_{30} / A_{10}

GPD parameterization:

Nucleon form factors, CTEQ parton distributions, Regge behavior,
Ansatz
Diehl, Feldmann, Jakob, Kroll EPJC 2005

Comparison with Phenomenology

Ratios A_{30} / A_{10}

Generalized form factors

$\mathrm{A}_{10}, \mathrm{~A}_{20}, \mathrm{~A}_{30}$

Lattice08 7-18-08 J.W. Negele

Generalized form factors

A_{10}, A_{20}, A_{30}
 New Data

2-d rms Radii for $A_{n 0}, \tilde{A}_{n 0}$

Summary

\square Mixed action calculations of generalized form factors:
\square Quark orbital angular momentum has unintuitive sign and contributes negligibly to total nucleon spin
\square Constraints on GPD's complementary to experiment
\square Measure transverse size
\square CBChPT describes behavior to surprisingly high pion masses
\square Improved statistics for light mass ensembles by factor 4:

- understand systematics and improve statistics of higher masses

Outlook

\square Dynamical DW calculations with RBC and UKQCD Mixed action results compare well with DW calculations see Sergey Syritsyn's talk - 5:40
\square Flavor singlet sector
\square Calculate $A_{20}^{(g)}(0)+B_{20}^{(g)}(0)$ from $\langle P| T_{\mu \nu}^{(g)}\left|P^{\prime}\right\rangle$ using improved gluon operators
\square Quark contributions from disconnected diagrams
\square Calculate renormalization and mixing coefficients $Z_{i j}$

Backup slides

Chiral extrapolation of gA_{A}

Masses below 500 MeV consistent with extrapolation to experimental point, but higher masses are not.

Plateaus for gA

331 MeV
arXiv 0801.40I6

FIG. 1: Plateaus of $g_{A} . V=(2.7 \mathrm{fm})^{3}$ and $m_{f}=0.005,0.01$, 0.02 , and 0.03 , from top to bottom.

Plateaus for g_{A}

FIG. 1: Plateaus of $g_{A} . V=(2.7 \mathrm{fm})^{3}$ and $m_{f}=0.005,0.01$, 0.02 , and 0.03 , from top to bottom.

331 MeV
arXiv 0801.4016

