Computation of the

 string tension in three dimensional Yang-Mills theoryusing large N reduction Joe Kiskis

UC Davis
Rajamani Narayanan
Florida International University

Outline

- Quick result
- Introduction
- Details
- Conclusion

Quick result arXiv:0807.1315

- 5^{3} lattice
© $N=47$
(2) $b=\frac{1}{g^{2} N}=0.6$ to 0.8
- Wilson loops 1×1 to 7×7
- $\sqrt{\sigma} b=0.1964 \pm 0.0009$ (continuum extrapolation)

Introduction

- Large N
- Large N reduction
- Phase structure
- Project description

Large N

- Expansion parameters $\alpha\left(Q^{2}\right)$ or $1 / \mathrm{N}$
- $N \rightarrow \infty$ simplifications
- Planar graphs
- Factorization
- Non-interacting mesons
- OZI rule
- $1 / 3 \approx 1 / \infty$

Large N reduction

- Reduction to a one point 1^{d} lattice (Eguchi-Kawai)
- Z_{N}^{d} center symmetry
- But broken at weak coupling

Work-arounds

- Quenched E-K
- But Bringoltz and Sharpe
- Twisted E-K
- But Teper and Vairinhos
- Continuum or partial reduction i.e. reduction to finite physical size $l>1 / T_{c}$

Center symmetry breaking at physical scale

$$
Z_{N}^{d} \rightarrow Z_{N}^{d-1} \rightarrow Z_{N}^{d-2} \rightarrow \ldots
$$

Kiskis, Narayanan, and Neuberger

Phase structure

3 dimensions

Figure 8: Summary of large $N \mathrm{QCD}$ in $d=3$ on L^{3} lattice
Narayanan and Neuberger

Project

- Context
- Karabali, Kim, and Nair
- $\sqrt{\sigma} b=\frac{1}{\sqrt{8 \pi}} \approx 0.1995$
- Bringoltz and Teper
- Large lattices
- N up to 8
- Polyakov loops
- $\sqrt{\sigma} b=0.1975 \pm 0.0002-0.0005$
- This work
- 5^{3} lattice
- $N=47$
b $=0.6$ to 0.8
- Smear space-like links with staples in the same time slice
- Wilson loops 1×1 to 7×7
- Fit to get quark-antiquark potential and string tension

Details

- Wilson gauge field action with bare coupling g
- $b=\frac{1}{g^{2} N}$ Tadpole improved to $b_{I}=e(b) b$ with e(b) the average plaquette
- Space-like and time-like separations K, T in lattice units.
- Physical units $k=K / b_{I}$ and $t=T / b_{I}$

Smearing

$$
U^{\prime}=P_{S U(N)}\left[(1-f) U+\frac{f}{2} S_{+}+\frac{f}{2} S_{-}\right]
$$

Iterate n times

$$
\tau=f n
$$

$$
f=0.1 \quad n=25 \quad \tau=2.5
$$

Compute all Wilson loops 1×1 to 7×7

Fit to $W(k, t)=e^{-a-m(k) t}$

Fit $m(k)$ to $\quad m(k)=\sigma b_{I}^{2} k+c_{0} b_{I}+\frac{c_{1}}{k}$

Extrapolate: $\quad b_{I} \rightarrow \infty \quad \sqrt{\sigma} b_{I} \rightarrow 0.1964 \pm 0.0009$

Are N and L large enough?

Are the results sensitive to smearing?

Do Creutz ratios work well?

Conclusion

- 5^{3} lattice
(2) $N=47$
- $b=\frac{1}{g^{2} N}=0.6$ to 0.8
- Wilson loops 1×1 to 7×7
- $\sqrt{\sigma} b=0.1964 \pm 0.0009$ (continuum extrapolation)

