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Outline

Motivation: To understand the effects of massive fermions on the phase diagram of
SU(N) gauge theories for fermions in various representations.

@ Phase diagram of a simple deformed Yang-Mills theory formulated on the lattice

@ Phase diagram of a more complicated deformed Yang-Mills theory (compare with
QCD(Adj))
@ Phase diagram of SU(N) gauge theories with massive fermions from the one-loop
effective potential
> Fermion representations: Fundamental (F), Antisymmetric (A), Symmetric (S), and
Adjoint (Adj)
> Boundary conditions: periodic (PBC), antiperiodic (ABC)
> N =2 through 9.
> various N¢

@ One-loop contribution to (JY)r (R=F,A,S,Ad))
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Lattice

model

Last year we analyzed a simple deformed Yang-Mills theory on the lattice (Myers and
Ogilvie 2008):
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Phase diagram in SU(3)

Siat,def = Sw + » Viat,der [P(x)]

Vist.der [P(x)] = HATEAP(x) = Ha (|trP (x)* ~ 1)

@ Simulations in SU(3) and SU(4) revealed two interesting new phases.
@ The simulations also showed that confined phase could be accessed perturbatively in

SU(3).

deconfined

confined

58 6 62 64
5]

(P(x)) in SU(@3), B = 65,
Hjy = —0.055

0.15
0.1F g
= 005 1
& of E
&
& 005 F 1
01 1
0.15 !
20.15 0 0.15

R(TrP(x))

(P(x)) in SU(4), B =11,
Hp=—0.12



Deformed Yang-Mills theory

To keep the confined phase accessible for N > 3 additional terms were required in the
deformation potential (Ogilvie et al 2007, Unsal and Yaffe 2008):
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Including the boson contribution from pure Yang-Mills theory
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@ We minimize this potential to determine the phase diagram for a range of values of
the a,



One-loop effective potential

The one-loop effective potential for N Majorana fermions (N pjrac = %Nf) of mass m in

a background Polyakov loop P = diag{e™,e™2,....e"} gauge field is (Meisinger and
Ogilvie 2001):
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where we have (41)" for periodic boundary conditions (PBC)
and (—1)" for antiperiodic boundary conditions (ABC) applied to fermions.

Chiral Condensate:
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Possible phases of QCD for PBC and ABC

o ABC
> confined phase
2 41
={0,= =
v { I 3 b 3 }
> deconfined phase

2 21 21, AT 4m 41l
V_{07070}7{?7?7?}7{?7?7?
o PBC

> confined phase
> deconfined phase
> @-breaking phase (P is not invariant under P — P*.)

Note: In QCD(F) with PBC on fermions, €-symmetry is only broken for N odd. For N
even, TrgP is magnetized along the negative real axis (v = {m, m,...}).
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Vepr and () in perturbative QCD

@ We calculate V4 for fermions in the fundamental representation to which ABC are

applied.
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@ Only the deconfined phase is accessible in the perturbative limit.
@ The fermion contribution to Vg vanishes as mf3 — oo,

@ The inflection point in Vggr at mfB ~ 1.4 implies a large one-loop contribution to
(Py).
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Phases of adjoint QCD: N. =3, N. =4, PBC, Nf>1
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Phases of adjoint QCD: N. =5, N. =6, PBC, N >1
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SU(3) Adjoint QCD (PBC) Ny =2
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@ The data points

(black dots) were
found by minimizing
Vesr with respect to
the Polyakov loop
eigenvalues v;.

The confined phase
is accessible
perturbatively for
mfB < 1.6.

There is a dramatic
jump in (@)
corresponding to
the deconfinement
transition

The model has the
same phases as
QCD(Adj)
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SU(4) Adjoint QCD (PBC) Ny =2
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@ The confined phase
is accessible
perturbatively for
mpB <1.0.

@ The model has the
same phases as
QCD(Adj), and
more, but the
additional phases
can be
circumnavigated.
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The confined phase
is accessible
perturbatively for
mf <0.8.

A moving phase is
found between the
confined and
SU(2) x SU(3)-dec
phases.

The model includes
the phases of
QCD(Adj).

The
(non-%-breaking)
moving phase of the
model is the same
as that of
QCD(Adj)).



Accessibility of the confined phase as N — o, or as Ny is increased
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@ As N — oo the maximum mf3 for which the confined phase is accessible, (mf) iz,
decreases.

@ However, as N¢ increases, (mf)..: increases (we must have Ny <5 Majorana
flavours to preserve asymptotic freedom).
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Orientifold Planar Equivalence

The story:

@ Armoni, Shifman, and Veneziano(2003 - 2004) prove non-perturbatively the
equivalence of the bosonic sectors of QCD(Ad]) with Nf Majorana fermions and
QCD(AS/S) with N¢ Dirac fermions, in the planar limit.

& Unsal and Yaffe (2006) show that on S* x R3 @-symmetry is broken in QCD(A/S)
when PBC are applied to fermions.

@ DeGrand and Hoffman (2007), Lucini et al (2007) showed using lattice simulations
that the ¥-breaking is lifted as S1 is decompactified

@ Lucini et al. (2008) non-perturbatively prove orientifold equivalence in the quenched

approximation (in the absence of ¢-breaking) using lattice simulations and calculate
the quark condensate in QCD(A/S/Adj)

We compare (to 1-loop order) the phase diagrams of QCD(A), QCD(S) with Nf =2 (1
Dirac flavour), to QCD(Ad)) with Ny =1 (Majorana flavour), for massive fermions with
PBC.
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SU(6) QCD(A) (left), (S) (middle), and (Adj) (right) for PBC on fermions
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The C breaking phase of QCD(AS/S)

@ The %-breaking phase is favoured in the case where PBC are applied to fermions in
the A and S representations (When ABC are used the deconfined phase is favoured).

@ For example, when N. = 6 the ©-breaking phase has the Polyakov loop eigenvalues

21 21 21 2m 2m 2n

v:{ 6 ) 6 ) 6 ) 6 7 6 ) 6 }
@ P is clearly not invariant under P — P*.
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Conclusions

One-loop PT:

@ In QCD(Adj) for N > 2 there are several exotic phases occuring between the
confined and deconfined phases

@ In QCD(Adj) for Nf > 2, as N increases, (mf3)cit, below which the confined phase is
accessible, decreases.

@ In QCD(Adj) for N¢ > 2, as Nf is increased, the confined phase is accessible for a
larger (mPB)crit-

@ In QCD(A/S) with PBC for fermions the €¢-breaking phase is favoured for all mf.

@ For all representations there is a clear one-loop contribution to (fy) for small mf3.

> In QCD(AS), QCD(S), QCD(F) there is an inflection point in Vg at which (@) # 0,
in the deconfined phase.

> In QCD(Adj) for N >2 (with PBC on fermions) the chiral condensate peaks at the
transition to the deconfined phase

@ In QCD(Adj) for Nf =1 the deconfined phase is favoured for all mf3.

The deformed Yang-Mills theory finds all the phases of QCD(Ad]j), and the a, can be
slowly varied to go through the phases in the same order.
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