Exotic phases of Finite Temperature SU(N) gauge theories with massive fermions: F, Adj, A/S

Joyce Myers and Michael Ogilvie jcmyers@wustl.edu mco@wuphys.wustl.edu

Washington University in St. Louis

July 17, 2008 Lattice 2008

Outline

Motivation: To understand the effects of massive fermions on the phase diagram of SU(N) gauge theories for fermions in various representations.

- Phase diagram of a simple deformed Yang-Mills theory formulated on the lattice
- Phase diagram of a more complicated deformed Yang-Mills theory (compare with QCD(Adj))
- Phase diagram of SU(N) gauge theories with massive fermions from the one-loop effective potential
 - Fermion representations: Fundamental (F), Antisymmetric (A), Symmetric (S), and Adjoint (Adj)
 - Boundary conditions: periodic (PBC), antiperiodic (ABC)
 - $N_c = 2$ through 9.
 - various N_f
- One-loop contribution to $\langle \bar{\psi}\psi \rangle_R$ (R = F, A, S, Adj)

Lattice model

Last year we analyzed a simple deformed Yang-Mills theory on the lattice (Myers and Ogilvie 2008):

$$S_{lat,def} = S_W + \sum_{\mathbf{x}} V_{lat,def} \left[P(\mathbf{x}) \right]$$
$$V_{lat,def} \left[P(\mathbf{x}) \right] \equiv H_A \operatorname{Tr}_A P(\mathbf{x}) = H_A \left(|\operatorname{tr} P(\mathbf{x})|^2 - 1 \right)$$

- Simulations in SU(3) and SU(4) revealed two interesting new phases.
- The simulations also showed that confined phase could be accessed perturbatively in SU(3).

Deformed Yang-Mills theory

To keep the confined phase accessible for N > 3 additional terms were required in the deformation potential (Ogilvie et al 2007, Unsal and Yaffe 2008):

$$V_{def}(P) \equiv \frac{1}{\beta} \sum_{n=1}^{\lfloor N/2 \rfloor} a_n |\operatorname{tr}(P^n)|^2 = \frac{1}{\beta} \sum_{n=1}^{\lfloor N/2 \rfloor} a_n \sum_{i,j=1}^{N} \cos\left[n\left(v_i - v_j\right)\right]$$

where $\lfloor N/2 \rfloor$ is the integer part of N/2. Including the boson contribution from pure Yang-Mills theory

$$V_{model}(P) = \frac{1}{\beta^4} \left[\frac{1}{24\pi^2} \sum_{i,j=1}^{N} [v_i - v_j]^2 (2\pi - [v_i - v_j])^2 - \frac{\pi^2}{45} (N^2 - 1) \right]$$

$$+\frac{1}{\beta}\sum_{n=1}^{\lfloor N/2 \rfloor}a_n\sum_{i,j=1}^N\cos\left[n\left(v_i-v_j\right)\right]$$

• We minimize this potential to determine the phase diagram for a range of values of the *a_n*

One-loop effective potential

The one-loop effective potential for N_f Majorana fermions $(N_{f,Dirac} = \frac{1}{2}N_f)$ of mass m in a background Polyakov loop $P = diag\{e^{iv_1}, e^{iv_2}, ..., e^{iv_N}\}$ gauge field is (Meisinger and Ogilvie 2001):

$$V_{eff}(P,m) \equiv -\frac{1}{\beta V_3} \ln Z(P,m)$$
$$= \frac{1}{\beta V_3} \left[-N_f \ln \det \left(-D_R^2(P) + m^2 \right) + \ln \det \left(-D_{adj}^2(P) \right) \right]$$

$$= \frac{m^2 N_f}{\pi^2 \beta^2} \sum_{n=1}^{\infty} \frac{(\pm 1)^n}{n^2} \operatorname{Re}[\operatorname{Tr}_R(P^n)] K_2(n\beta m) + \frac{1}{\beta^4} \left[\frac{1}{24\pi^2} \sum_{i,j=1}^N [v_i - v_j]^2 (2\pi - [v_i - v_j])^2 - \frac{\pi^2}{45} \left(N^2 - 1 \right) \right]$$

where we have $(+1)^n$ for periodic boundary conditions (PBC) and $(-1)^n$ for antiperiodic boundary conditions (ABC) applied to fermions.

Chiral Condensate:

$$\langle \bar{\psi}\psi \rangle_{1-loop}(m) = -\lim_{V_4 \to \infty} \frac{1}{V_4 N_f} \frac{\partial}{\partial m} \ln Z(m) = \frac{1}{N_f} \frac{\partial}{\partial m} V_{\text{eff}}(P,m)$$

Possible phases of QCD for PBC and ABC

ABC

confined phase

$$\mathbf{v} = \{0, \frac{2\pi}{3}, \frac{4\pi}{3}\}$$

deconfined phase

$$\mathbf{v} = \{0, 0, 0\}, \{\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{2\pi}{3}\}, \{\frac{4\pi}{3}, \frac{4\pi}{3}, \frac{4\pi}{3}\}$$

- PBC
 - confined phase
 - deconfined phase
 - \mathscr{C} -breaking phase (*P* is not invariant under $P \rightarrow P^*$.)

$$\mathbf{v} = \{\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{2\pi}{3}\}$$

Note: In QCD(F) with PBC on fermions, \mathscr{C} -symmetry is only broken for N odd. For N even, $Tr_F P$ is magnetized along the negative real axis ($\mathbf{v} = \{\pi, \pi, ...\}$).

$V_{\it EFF}$ and $\langle ar{\psi} \psi angle$ in perturbative QCD

• We calculate V_{eff} for fermions in the fundamental representation to which ABC are applied.

- Only the deconfined phase is accessible in the perturbative limit.
- The fermion contribution to V_{eff} vanishes as $meta
 ightarrow\infty.$
- The inflection point in V_{EFF} at $m\beta\approx 1.4$ implies a large one-loop contribution to $\langle\bar\psi\psi\rangle.$

Phases of adjoint QCD: $N_c = 3$, $N_c = 4$, PBC, $N_f > 1$

confined: $\mathbf{v} = \{0, \frac{2\pi}{3}, \frac{4\pi}{3}\}$ $U(1) \times SU(2): \mathbf{v} = \{0, \pi, \pi\}$ deconfined: $\mathbf{v} = \{0, 0, 0\}$

 $N_c = 4$

confined: $\mathbf{v} = \{0, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}\}\$ SU(2) conf: $\mathbf{v} = \{-\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}\}\$ deconfined: $\mathbf{v} = \{0, 0, 0, 0\}\$ Phases of adjoint QCD: $N_c = 5$, $N_c = 6$, PBC, $N_f > 1$

confined: $\mathbf{v} = \{0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}\}$ inconst: $\mathbf{v} = \{0, -\phi, -\phi, \phi, \phi\}$ $SU(2) \times SU(3)$ dec: $\mathbf{v} = \{\pi, \pi, 0, 0, 0\}$ deconfined: $\mathbf{v} = \{0, 0, 0, 0, 0\}$

confined:
$$\mathbf{v} = \{\frac{\pi}{6}, \frac{3\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{9\pi}{6}, \frac{11\pi}{6}\}\$$

 $SU(3)$ conf: $\mathbf{v} = \{0, \frac{2\pi}{3}, -\frac{2\pi}{3}, 0, \frac{2\pi}{3}, -\frac{2\pi}{3}\}\$
 $SU(2)$ conf: $\mathbf{v} = \{-\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}\}\$
deconfined: $\mathbf{v} = \{0, 0, 0, 0, 0, 0\}$

SU(3) Adjoint QCD (PBC) $N_f = 2$

- The data points (black dots) were found by minimizing V_{eff} with respect to the Polyakov loop eigenvalues v_i .
- The confined phase is accessible perturbatively for $m\beta \leq 1.6$.
- There is a dramatic jump in $\langle \bar{\psi} \psi \rangle$ corresponding to the deconfinement transition
- The model has the same phases as QCD(Adj)

SU(4) Adjoint QCD (PBC) $N_f = 2$

The confined phase is accessible perturbatively for $m\beta \leq 1.0.$

 The model has the same phases as QCD(Adj), and more, but the additional phases can be circumnavigated.

SU(5) Adjoint QCD (PBC) $N_f = 2$

- The confined phase is accessible perturbatively for $m\beta \leq 0.8$.
- A moving phase is found between the confined and $SU(2) \times SU(3)$ -dec phases.
- The model includes the phases of QCD(Adj).
- The (non-C-breaking) moving phase of the model is the same as that of QCD(Adj).

Accessibility of the confined phase as $N \rightarrow \infty$, or as N_f is increased

- As $N \to \infty$ the maximum $m\beta$ for which the confined phase is accessible, $(m\beta)_{crit}$, decreases.
- However, as N_f increases, $(m\beta)_{crit}$ increases (we must have $N_f \leq 5$ Majorana flavours to preserve asymptotic freedom).

Orientifold Planar Equivalence

The story:

- Armoni, Shifman, and Veneziano(2003 2004) prove non-perturbatively the equivalence of the bosonic sectors of QCD(Adj) with N_f Majorana fermions and QCD(AS/S) with N_f Dirac fermions, in the planar limit.
- Unsal and Yaffe (2006) show that on $S^1 \times \mathbb{R}^3$ C-symmetry is broken in QCD(A/S) when PBC are applied to fermions.
- DeGrand and Hoffman (2007), Lucini et al (2007) showed using lattice simulations that the C-breaking is lifted as S^1 is decompactified
- Lucini et al. (2008) non-perturbatively prove orientifold equivalence in the quenched approximation (in the absence of *C*-breaking) using lattice simulations and calculate the quark condensate in QCD(A/S/Adj)

We compare (to 1-loop order) the phase diagrams of QCD(A), QCD(S) with $N_f = 2$ (1 Dirac flavour), to QCD(Adj) with $N_f = 1$ (Majorana flavour), for massive fermions with PBC.

SU(6) QCD(A) (left), (S) (middle), and (Adj) (right) for PBC on fermions

The C breaking phase of QCD(AS/S)

- The *C*-breaking phase is favoured in the case where PBC are applied to fermions in the *A* and *S* representations (When ABC are used the deconfined phase is favoured).
- For example, when $N_c = 6$ the C-breaking phase has the Polyakov loop eigenvalues

$$\mathbf{v} = \{\frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}, \frac{2\pi}{6}\}$$

• P is clearly not invariant under $P \rightarrow P^*$.

Conclusions

One-loop PT:

- In QCD(Adj) for $N_f \ge 2$ there are several exotic phases occuring between the confined and deconfined phases
- In QCD(Adj) for $N_f \ge 2$, as N increases, $(m\beta)_{crit}$, below which the confined phase is accessible, decreases.
- In QCD(Adj) for $N_f \ge 2$, as N_f is increased, the confined phase is accessible for a larger $(m\beta)_{crit}$.
- In QCD(A/S) with PBC for fermions the C-breaking phase is favoured for all $m\beta$.
- For all representations there is a clear one-loop contribution to $\langle \bar{\psi}\psi \rangle$ for small $m\beta$.
 - ▶ In QCD(AS), QCD(S), QCD(F) there is an inflection point in V_{eff} at which $\langle \bar{\psi}\psi \rangle \neq 0$, in the deconfined phase.
 - ▶ In QCD(Adj) for $N_f \ge 2$ (with PBC on fermions) the chiral condensate peaks at the transition to the deconfined phase
- In QCD(Adj) for $N_f = 1$ the deconfined phase is favoured for all $m\beta$.

The deformed Yang-Mills theory finds all the phases of QCD(Adj), and the a_n can be slowly varied to go through the phases in the same order.