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Outline

Motivation: To understand the effects of massive fermions on the phase diagram of
SU(N) gauge theories for fermions in various representations.

Phase diagram of a simple deformed Yang-Mills theory formulated on the lattice

Phase diagram of a more complicated deformed Yang-Mills theory (compare with
QCD(Adj))

Phase diagram of SU(N) gauge theories with massive fermions from the one-loop
effective potential

◮ Fermion representations: Fundamental (F), Antisymmetric (A), Symmetric (S), and
Adjoint (Adj)

◮ Boundary conditions: periodic (PBC), antiperiodic (ABC)
◮ Nc = 2 through 9.
◮ various Nf

One-loop contribution to 〈ψ̄ψ〉R (R = F ,A,S ,Adj)
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Lattice model
Last year we analyzed a simple deformed Yang-Mills theory on the lattice (Myers and
Ogilvie 2008):

Slat,def = SW +∑
x

Vlat,def [P(x)]

Vlat,def [P(x)] ≡ HATrAP(x) = HA

(

|trP (x)|2−1
)

Simulations in SU(3) and SU(4) revealed two interesting new phases.
The simulations also showed that confined phase could be accessed perturbatively in
SU(3).
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Deformed Yang-Mills theory

To keep the confined phase accessible for N > 3 additional terms were required in the
deformation potential (Ogilvie et al 2007, Unsal and Yaffe 2008):

Vdef (P) ≡
1

β

⌊N/2⌋

∑
n=1

an |tr(P
n)|2 =

1

β

⌊N/2⌋

∑
n=1

an

N

∑
i , j=1

cos
[

n
(

vi −vj

)]

where ⌊N/2⌋ is the integer part of N/2.
Including the boson contribution from pure Yang-Mills theory

Vmodel (P) =
1

β4

[

1

24π2

N

∑
i ,j=1

[vi −vj ]
2
(

2π − [vi −vj ]
)2

−
π2

45

(

N2 −1
)

]

+
1

β

⌊N/2⌋

∑
n=1

an

N

∑
i , j=1

cos
[

n
(

vi −vj

)]

We minimize this potential to determine the phase diagram for a range of values of
the an
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One-loop effective potential
The one-loop effective potential for Nf Majorana fermions (Nf ,Dirac = 1

2Nf ) of mass m in

a background Polyakov loop P = diag{e iv1 ,e iv2 , ...,e ivN} gauge field is (Meisinger and
Ogilvie 2001):

Veff (P,m) ≡−
1

βV3
lnZ (P,m)

=
1

βV3

[

−Nf lndet
(

−D2
R (P)+m2

)

+lndet
(

−D2
adj(P)

)]

=
m2Nf

π2β2

∞

∑
n=1

(±1)n

n2
Re [TrR (Pn)]K2 (nβm)

+
1

β4

[

1

24π2

N

∑
i ,j=1

[vi −vj ]
2 (

2π − [vi −vj ]
)2

−
π2

45

(

N2 −1
)

]

where we have (+1)n for periodic boundary conditions (PBC)
and (−1)n for antiperiodic boundary conditions (ABC) applied to fermions.

Chiral Condensate:

〈ψ̄ψ〉1−loop(m) = − lim
V4→∞

1

V4Nf

∂
∂m

lnZ (m) =
1

Nf

∂
∂m

Veff(P,m)
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Possible phases of QCD for PBC and ABC

ABC
◮ confined phase

v = {0,
2π
3

,
4π
3
}

◮ deconfined phase

v = {0,0,0},{
2π
3

,
2π
3

,
2π
3
},{

4π
3

,
4π
3

,
4π
3
}

PBC
◮ confined phase
◮ deconfined phase
◮ C -breaking phase (P is not invariant under P → P∗.)

v = {
2π
3

,
2π
3

,
2π
3
}

Note: In QCD(F) with PBC on fermions, C -symmetry is only broken for N odd. For N

even, TrF P is magnetized along the negative real axis (v = {π,π, ...}).
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VEFF and 〈ψ̄ψ〉 in perturbative QCD

We calculate Veff for fermions in the fundamental representation to which ABC are
applied.
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VF ,−, Nc = 3, Nf = 2 (1 Dirac flavour)

0

0.1

0.2

〈ψ̄
ψ
〉β

3

0 1 2 3 4 5 6 7 8 9 10
mβ
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Only the deconfined phase is accessible in the perturbative limit.

The fermion contribution to Veff vanishes as mβ → ∞.

The inflection point in VEFF at mβ ≈ 1.4 implies a large one-loop contribution to
〈ψ̄ψ〉.
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Phases of adjoint QCD: Nc = 3, Nc = 4, PBC, Nf > 1
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Phases of adjoint QCD: Nc = 5, Nc = 6, PBC, Nf > 1
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SU(3) Adjoint QCD (PBC) Nf = 2
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The data points
(black dots) were
found by minimizing
Veff with respect to
the Polyakov loop
eigenvalues vi .

The confined phase
is accessible
perturbatively for
mβ ≤ 1.6.
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SU(4) Adjoint QCD (PBC) Nf = 2
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SU(5) Adjoint QCD (PBC) Nf = 2
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The confined phase
is accessible
perturbatively for
mβ ≤ 0.8.

A moving phase is
found between the
confined and
SU(2)×SU(3)-dec
phases.
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Accessibility of the confined phase as N → ∞, or as Nf is increased
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As N → ∞ the maximum mβ for which the confined phase is accessible, (mβ )crit ,
decreases.

However, as Nf increases, (mβ )crit increases (we must have Nf ≤ 5 Majorana
flavours to preserve asymptotic freedom).
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Orientifold Planar Equivalence

The story:

Armoni, Shifman, and Veneziano(2003 - 2004) prove non-perturbatively the
equivalence of the bosonic sectors of QCD(Adj) with Nf Majorana fermions and
QCD(AS/S) with Nf Dirac fermions, in the planar limit.

Unsal and Yaffe (2006) show that on S1×R
3 C -symmetry is broken in QCD(A/S)

when PBC are applied to fermions.

DeGrand and Hoffman (2007), Lucini et al (2007) showed using lattice simulations
that the C -breaking is lifted as S1 is decompactified

Lucini et al. (2008) non-perturbatively prove orientifold equivalence in the quenched
approximation (in the absence of C -breaking) using lattice simulations and calculate
the quark condensate in QCD(A/S/Adj)

We compare (to 1-loop order) the phase diagrams of QCD(A),QCD(S) with Nf = 2 (1
Dirac flavour), to QCD(Adj) with Nf = 1 (Majorana flavour), for massive fermions with
PBC.
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SU(6) QCD(A) (left), (S) (middle), and (Adj) (right) for PBC on fermions
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The C breaking phase of QCD(AS/S)

The C -breaking phase is favoured in the case where PBC are applied to fermions in
the A and S representations (When ABC are used the deconfined phase is favoured).

For example, when Nc = 6 the C -breaking phase has the Polyakov loop eigenvalues

v = {
2π
6

,
2π
6

,
2π
6

,
2π
6

,
2π
6

,
2π
6
}

P is clearly not invariant under P → P∗.
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Conclusions

One-loop PT:

In QCD(Adj) for Nf ≥ 2 there are several exotic phases occuring between the
confined and deconfined phases

In QCD(Adj) for Nf ≥ 2, as N increases, (mβ )crit , below which the confined phase is
accessible, decreases.

In QCD(Adj) for Nf ≥ 2, as Nf is increased, the confined phase is accessible for a
larger (mβ )crit .

In QCD(A/S) with PBC for fermions the C -breaking phase is favoured for all mβ .

For all representations there is a clear one-loop contribution to 〈ψ̄ψ〉 for small mβ .
◮ In QCD(AS), QCD(S), QCD(F) there is an inflection point in Veff at which 〈ψ̄ψ〉 6= 0,

in the deconfined phase.
◮ In QCD(Adj) for Nf ≥ 2 (with PBC on fermions) the chiral condensate peaks at the

transition to the deconfined phase

In QCD(Adj) for Nf = 1 the deconfined phase is favoured for all mβ .

The deformed Yang-Mills theory finds all the phases of QCD(Adj), and the an can be
slowly varied to go through the phases in the same order.
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