The QCD transition with 2+1 dynamical flavors

Y. Aoki, Z. Fodor, S. D. Katz, S. Krieg, K. Szabo

- 1. Discrepancy in the transition temperature
- 2. T = 0 simulations at the physical point
- 3. $N_t = 12$ simulations at finite temperature

Problem

p4fat

O asqtad

200

180

hotQCD finite T results are very different from ours

(hotQCD data points: 0710.1655, 0711.0661, 0804.4148, RBRC workshop 04.08) (our old data points: hep-lat/0609068)

chiral susceptibility, rescaled (quark masses are different)

$$\chi_{\bar{\psi}\psi} = m_l^2 \frac{\partial^2}{\partial m_l^2} (f(T) - f(T=0))$$

chiral condensate

$$\Delta_{l,s} = \left(\langle \overline{l}l \rangle - m_l / m_s \langle \overline{s}s \rangle \right) / \left(\langle \overline{l}l \rangle_{T=0} - m_l / m_s \langle \overline{s}s \rangle_{T=0} \right)$$

Possible resolutions

hep-lat/0609068: $N_t = 4.6$ of 'p4fat3' are too coarse, no controlled continuum limit, status 2008: fine $N_t = 8$ somewhat better but still large discrepancy our simulations:

- \bullet scale set by f_K , non-Goldstone pions distort chiral extrapolation or continuum limit
- naive staggered dispersion relation has large artefacts hotQCD:
- nonphysical quark masses $\rightarrow \sim 5$ MeV soeldner's talk
- scale set by $r_0^{\text{HPQCD,UKQCD}} = 0.469(7) \text{ fm}$ $r_0^{\text{ETM}} = 0.444(4) \text{ fm}, r_0^{\text{QCDSF}} = 0.467(6) \text{ fm}, r_0^{\text{PACS-CS}} = 0.492(6)(+7) \text{ fm}$ both:

- universality problem of staggered discretization
- bug in computer code
- . . .

maybe a bit of all systematic errors are simply underestimated

Improving our previous results

- 1. improving T = 0 simulations previously: $m_{\pi} \geq 240 \text{MeV} + \text{chiral extrapolations}$ now: $|m=m^{\text{phys}}|$, no need for chiral extrapolations ⇒ more precise scale/renormalization
- 2. improving T > 0 simulations previously: $N_t = 4, 6, 8, 10$ at the physical point now: $N_t = 12$ at the physical point
- ⇒ more control over lattice artefacts

Simulation setup: finite T

nVidia GeForce 8800 Ultra 768 MB video memory 103.7 GB/sec bandwidth two cards per machine

multishift inverter on $12 \cdot 36^3$ fits to the video memory and runs with 32 Gflop

gauge force on the video card: 15 Gflop

only single precision arithmetics, HMC-force is not needed more precisely, for HMC-energy mixed precision inverters ($\epsilon = 10^{-8}$)

50 dual GPU PC's in Wuppertal \rightarrow 3 Tflops \sim 1 BGP rack cluster computing: ideal for finite T with many parameter sets

Simulation setup: zero T

zero T lattices are too large for a single video card \rightarrow BG/P supercomputer in Juelich

Simulation setup: zero T

simulations directly at the physical point choose lattice sizes, so that finite volume corrections are below 0.5% for f_π, m_π, f_K, m_K (cont. formula of Colangelo, Durr, Haefeli '05)

β	N_t^{crit}	lattice	#traj
3.45	\sim 4	$24^{3} \times 32$	1500
3.55	~ 6	$24^{3} \times 32$	3000
3.67	~ 8	$32^{3} \times 48$	1500
3.75	~ 10	$40^3 \times 48$	1500
3.85	\sim 13	$48^3 \times 64$	1500

Zero T results at the physical point

chiral extrapolations (not staggered $\chi \rm PT$!) work amazingly well for all analyzed spacings the extrapolation error for f_π, m_π, f_K, m_K is < 1%

hep-lat/0609068: "2% is the accuracy of our LCP."

Zero T results at the physical point

extend spectrum analysis to Ω red bands are the experimental values with uncertanities K^* decays in the physical point, width is also given (pink) smaller spacings and r_0 are currently under analysis

Finite T results

strange quark number susceptiblity

preliminary results, 300-500 trajectories in each point good agreement with old $N_t=10~{\rm data}$

hep-lat/0609068: "For the transition temperature in the continuum limit one gets: $T_c(\chi_s) = 175(2)(4)$ MeV"

Finite T results

renormalized chiral susceptibility

nice agreement with old $N_t=8,10$ data hep-lat/0609068: "the transition temperature based on the chiral susceptibilty reads $T_c(\chi_{\bar{\psi}\psi})=151(3)(3)$ MeV"

Summary

- improving determination of thermodynamical observables by
- 1. zero T simulations with physical quark masses
- 2. finite T simulations with $N_t = 12$
- chiral extrapolations were correct on the 1% level
- ullet preliminary results for chiral susceptibility and strange susceptibility on $N_t=12$ are in good agreement with our old data