Renormalized Polyakov loops in various Representations in finite Temperature SU(2) gauge theory

Kay Hübner together with C. Pica

Brookhaven National Lab

Lattice 2008 College of William and Mary, Williamsburg

- Polyakov loop is the order parameter of the deconfinement transition in SU(N_c) theories
- needs renormalisation due to UV-divergencies
- higher representations of Polyakov loop probe sensitivity to breakdown of center symmetry
- check Casimir scaling, $L_D^{C_2(D')} = L_{D'}^{C_2(D)}$
- has been done in SU(3) pure gauge theory
 - S. Gupta, K. H. and O. Kaczmarek, Phys. Rev. D 77, 034503 (2008) [arXiv:0711.2251 [hep-lat]].
- today: renormalize Polyakov loop in 3 lowest irreducable reps in SU(2)

n/2	D(n)	N _c -ality	C ₂ (n)	dn	
1/2	2	1	3/4	1	fundamental
1	3	0	2	8/3	adjoint
3/2	4	1	15/4	5	-

• Polyakov loop in fundamental representation with n = 1 (spin 1/2) and recursion formula for higher representations with spin n/2 at each **x**

$$I_1(\mathbf{x}) = \operatorname{Tr} \prod_{x_0=0}^{N_{\tau}-1} U_4(\mathbf{x}, x_0)$$
 and $I_{n+1} = I_n I_1 - I_{n-1}, I_0 = 1$

• renormalised Polyakov loop in representation with spin n/2

$$L_n(T) = Z_n(g^2)^{d_n N_\tau} \left\langle L_n^b \right\rangle (g^2, N_\tau) \quad \text{where} \quad L_n^b = \frac{\sum_{\mathbf{x}} l_n(\mathbf{x})}{D(n)V} \quad \text{and} \quad T = \left(a(g^2)N_\tau\right)^{-1}$$

- $d_n = \frac{C_2(n)}{C_2(n=1)}$, where $C_2(n=1) = \frac{N_c^2 1}{2N_c} = \frac{3}{4}$
- SU(2) standard Wilson action, $N_{\tau} = 4, 5, 6, 8, 12$ and $N_{\sigma}/N_{\tau} = 4$ and some $N_{\sigma}/N_{\tau} = 8$, statistics up to $O(10^5)$ close to T_c

Renormalization

S. Gupta, K. H. and O. Kaczmarek, Phys. Rev. D 77, 034503 (2008) [arXiv:0711.2251 [hep-lat]].

K. Hübner (BNL)

Renormalization

• Choose $Z_n(g_{\text{start}}^2)$ and $N_{\tau_1} < N_{\tau_2}$

S. Gupta, K. H. and O. Kaczmarek, Phys. Rev. D 77, 034503 (2008) [arXiv:0711.2251 [hep-lat]].

K. Hübner (BNL)

Renormalization

• Choose $Z_n(g_{\text{start}}^2)$ and $N_{\tau_1} < N_{\tau_2}$

S. Gupta, K. H. and O. Kaczmarek, Phys. Rev. D 77, 034503 (2008) [arXiv:0711.2251 [hep-lat]].

K. Hübner (BNL)

β	V ₀	Z_1	Ref
2.5115	0.537(4)	1.308(26)	[1]
2.74	0.482(3)	1.2725(19)	[1]
2.96	0.4334(9)	1.2419(6)	[2]

• use self-energy contributions in T = 0-potential

$$V(R) = V_0 + \frac{a}{R} + \sigma R$$

V₀ connected to renormalisation constant

$$Z_1(g^2) = e^{V_0(g^2)/2}$$

interpolate between 2 largest couplings, check consistency later

• assume
$$Z_n(g_{\text{start}}^2) = Z_1(g_{\text{start}}^2)$$
 for all $n = 1, 2, 3$

G. S. Bali, J. Fingberg, U. M. Heller, F. Karsch and K. Schilling, Phys. Rev. Lett. **71**, 3059 (1993) [arXiv:hep-lat/9306024].
G. S. Bali, K. Schilling and A. Wachter, Phys. Rev. D **55**, 5309 (1997) [arXiv:hep-lat/9611025].

Renormalized Polyakov Loops

HTL-result for high T: E. Gava and R. Jengo, Phys. Lett. B 105, 285 (1981).

K. Hübner (BNL)

Renormalized Polyakov Loops

- 3d Ising universality class: $\beta = 0.3265(3)$, $\omega = 0.84(4)$, $\nu = 0.6301(1)$. $\Delta = \omega \nu = 0.530(16)$
 - A. Pelissetto and E. Vicari, Phys. Rept. 368, 549 (2002) [arXiv:cond-mat/0012164].
- leading order behavior:

 $L_n = A_n t^{n\beta} + c_n \delta_{d,0}$, where $d : N_c$ -ality

- observed for bare loops (without *c_n*-term):
 - P. H. Damgaard, Phys. Lett. B 194, 107 (1987).
 - K. Redlich and H. Satz, Phys. Lett. B 213, 191 (1988).
 - J. E. Kiskis, Phys. Rev. D 41, 3204 (1990).
- NLO-behavior:

$$L_n = A_n t^{n\beta} (1 + B_n t^{\Delta}) + c_n \delta_{d0}$$

n	Interval	An	nβ	cn
1	[0.01 : 0.25]	0.9952(89)	0.2666(46)	-
2	[0.1; 0.5]	0.881(24)	0.576(56)	0.007(40)

n	Interval	An	Bn	Cn
1	[0.01 : 1.0]	1.2203(69)	-0.2464(65)	-
2	[0.1 : 1.0]	1.126(40)	-0.249(20)	0.005(10)

Renormalization Constants

Z_n independent of n

consistent with initial interpolation and V₀-data

also observed in SU(3)

S. Gupta, K. H. and O. Kaczmarek, Phys. Rev. D 77, 034503 (2008) [arXiv:0711.2251 [hep-lat]].

K. Hübner (BNL)

Casimir Scaling

• $L_n = L_1^{d_n} \longrightarrow L_n^{1/d_n}$ independent of n

Casimir Scaling II

- use bare loops because of noise
- fit power law At^x in interval [0.1 : 10.]
- SU(2): *x* = −0.7870(64) and SU(3): *x* = −0.8366(91)

SU(2) and SU(3)

• use $F = -T \ln L$

• factor c = 1.028, due to g^4 corrections?

- we have computed renormalized Polyakov loops in the three lowest irreducable representations in finite temperature SU(2) gauge theory
- we found renormalization constants to be independent of the representation
- Casimir scaling is realized for the Polyakov loops at high temperatures, deviations diverge when approaching *T_c* following a power law
- renormalized fundamental Polyakov loops in SU(2) and SU(3) agree very well for a large interval of temperatures
- do renormalization of L in SU(4) and possibly beyond