$\alpha_s(M_Z)$ FROM UV-SENSITIVE LATTICE OBSERVABLES REVISITED

K. Maltman [CSSM, Adelaide and York University]

D. Leinweber, A. Sternbeck, P. Moran [CSSM, Adelaide]

OUTLINE

- *Motivation: other determinations c.f./vs. HPQCD/UKQCD*
- Some relevant details/issues for HPQCD/UKQCD
- Modified analysis and results

HPQCD/UKQCD c.f. Recent Non-Lattice $\alpha_s(M_Z)$

THE HPQCD/UKQCD ANALYSIS

- Work with
 - UV-sensitive observables $\{O_k\}$ $(log(W_{11}), log(W_{12}), log(W_{12}/u_0^6), log(W_{13}/W_{22})$ etc.)

- DEFINE $\alpha_V \equiv 3^{rd}$ order $\alpha_s^{\overline{MS}}$ truncation of heavy quark potential coupling [Y. Schroder]

 $\alpha_V(Q) \equiv \alpha_s(Q) \left[1 + a_1 \alpha_s(Q) + a_2 \alpha_s(Q)^2 \right]$

 $\Rightarrow \beta_V(\alpha_V)$ to 4-loops, 4-loop running for α_V

- Perturbative expansion for O_k

$$O_k = D_k \alpha_{V,k} \left[1 + c_1^{(k)} \alpha_{V,k} + c_2^{(k)} \alpha_{V,k}^2 + c_3^{(k)} \alpha_{V,k}^3 + \cdots \right]$$

*
$$\alpha_{V,k} \equiv \alpha_V(Q_k)$$
 ($Q_k = d_k/a$: O_k BLM scale)
* D_k , $c_{1,2}^{(k)}$ from 3-loop LPT [Q. Mason et al.]
- $a \sim 0.09$, 0.12, 0.18 fm MILC $n_f = 2 + 1$ data

- Find: known $c_{1,2}$ insufficient to fit O_k at all 3 scales
- using data at all 3 scales, 4-loop α_V running, fit $\alpha_V(Q_{ref})$, $c_3(k), \cdots c_{10}^{(k)}$ (priors for the $c_{N>2}$)

$$\Rightarrow \alpha_V^{n_f=3}$$
(7.5 GeV) = 0.2082(40)

• Running to M_Z :

-
$$\alpha_V^{n_f=3}(Q_{ref})$$
 to chosen $n_f = 3 \rightarrow 4$ matching scale $(\bar{m}_c \equiv m_c(m_c) = 1.25 \text{ GeV})$ with 4-loop V running

$$-\alpha_V^{n_f=3}(\bar{m}_c) \to \alpha_s^{n_f=3}(\bar{m}_c) \ [V \to \overline{MS} \text{ conversion scale} \\ \text{choice } \mu_{match} = \bar{m}_c]$$

$$-n_f = 5 \alpha_s(M_Z)$$
 via \overline{MS} running/matching

*
$$n_f = 3 \rightarrow 4$$
 (4 \rightarrow 5) matching at \bar{m}_c (\bar{m}_b)

 \ast self-consistent combination of 3-loop n_f = 4,5 running/2-loop matching at flavor thresholds yields

$$\alpha_s(M_Z) = 0.1170(12)$$

Some Relevant Numerical Details/Complications

• numerics of the $n_f = 3 \alpha_V \text{ vs } \alpha_s$ expansion:

$$\alpha_V \equiv \alpha_s \left[1 + 0.557 \alpha_s + 1.702 \alpha_s^2 \right]$$

 $(\Rightarrow$ much faster running for α_V)

• with
$$\mu^2 \frac{da}{d\mu^2} \equiv -\sum_{k=0} \beta_k^V a^{k+2}$$

k	$eta_k^{\overline{MS}}$	eta_k^V
0	9/4	9/4
1	4	4
2	10.060	33.969
3	47.228	-324.393

• \Rightarrow 4-loop-truncated running breaks down at much higher scales for α_V than for α_s

- e.g., series for
$$\mu^2 da_V(\mu^2)/d\mu^2$$
 at 1.25 GeV
 $\propto 1 + 0.3087 + 0.4552 - 0.7549 + \cdots$
[danger for $\mu = 7.5 \rightarrow 1.25$ GeV $\alpha_V(\mu)$ running]

- c.f. series for
$$\mu^2 da_{\overline{MS}}(\mu^2)/d\mu^2$$
 at 1.25 GeV
 $\propto 1 + 0.2128 + 0.0641 + 0.0360$

• impact of μ_{match} choice on $\alpha_s(M_Z)$ [Figure]

Dependence of $\alpha_s(M_Z)$ on $V \to \overline{MS}$ conversion scale

- 4-loop α_V running also a potential problem for fitting $\alpha_V(Q_{ref})\equiv \alpha_0,\ c_{k>2}$
 - used to run α_0 to $a \sim 0.18$, 0.12, 0.09 fm BLM scales as part of fitting procedure

– e.g., series for $\frac{-1}{\beta_0 a_V^2} \mu^2 \frac{da_V}{d\mu^2}$ at coarsest ($a \sim 0.18$ fm) lattice BLM scales Q_k

Observable	Q_k (GeV)	Series (increasing order)	
$log(W_{11})$	3.80	1 + 0.154 + 0.113 - 0.094	
$log(W_{12})$	3.43	1 + 0.162 + 0.125 - 0.108	
$log\left(\frac{W_{12}}{u_0^6}\right)$	2.08	1 + 0.213 + 0.217 - 0.248	
$log\left(\frac{W_{13}}{W_{22}}\right)$	1.38	1 + 0.285 + 0.388 - 0.594	

• impact on fitted $c_{k>3}$ of 4-loop-truncated β

- expand
$$\alpha_V(Q_k) = \sum_{N=1} c_N(t) \alpha_0^N (c_N \text{ polynomials in} t = \log(Q_k^2/Q_{ref}^2), c_1 = 1, \alpha_0 \equiv \alpha_V(Q_k^{max}))$$

- dependence of O_k on unknown $\beta_4^V, \beta_5^V, \cdots, c_3^{(k)}, c_4^{(k)}, \cdots$:

$$\begin{aligned} \frac{O_k}{D_k} &= \cdots \alpha_0^4 \left(c_3^{(k)} \cdots \right) + \alpha_0^5 \left(c_4^{(k)} - 2.87t c_3^{(k)} \cdots \right) \\ &+ \alpha_0^6 \left(c_5^{(k)} - 0.0033\beta_4^V t - 3.58t c_4^{(k)} \right. \\ &+ [5.13t^2 - 1.62t] c_3^{(k)} \cdots \right) \\ &+ \alpha_0^7 \left(c_6^{(k)} - 0.0010\beta_5^V t + [0.0094t^2 - 0.0065t c_1^{(k)}] \beta_4^V \right. \\ &- 4.30t c_5^{(k)} + [7.69t^2 - 2.03t] c_4^{(k)} \\ &+ [-7.35t^3 + 6.39t^2 - 4.38t] c_3^{(k)} \cdots \right) + \cdots \end{aligned}$$

Consequences:

- * neglect of $\beta_4^V, \beta_5^V, \dots \Rightarrow$ incorrect scale-dependence without compensating shifts in *at least* $c_4^{(k)}, c_5^{(k)}, \dots$
- * problem minimized by (i) reducing α_0 (choosing O_k with highest maximum BLM scale), and (ii) minimizing maximum t (work with subset of higher-scale lattices)
- * $c_3^{(k)}$ also potentially affected since, e.g., compensating shift in $c_4^{(k)}$ at $O(\alpha_0^6)$ no longer fully compensates for missing β_4^V at $O(\alpha_0^7)$ etc.
- * \Rightarrow analysis safest for high-scale O_k ($log(W_{11})$), 3-fold (rather than 5-fold) fit

A MODIFIED/UPDATED ANALYSIS

- incorporate new USQCD $a \sim 0.06$ fm (W_{11} and W_{12} only) and MILC $a \sim 0.15$ fm data [plus $a \sim 0.09$, 0.12, 0.18 fm MILC data used by HPQCD/UKQCD]
- 3-loop PT $O(\alpha_V^3)$ expansions as per HPQCD/UKQCD
- all running (between different lattice scales, and to M_Z) through 4-loop-truncated \overline{MS} running
- central fits with $a \sim 0.06, 0.09, 0.12$ fm (same range of relative scales, higher absolute scales c.f. HPQCD/UKQCD)

- extended 5-fold fits including $a \sim 0.15, 0.18$ fm to test consistency, convergence, control of truncation impact
- analyze $log(W_{11})$, $log(W_{12})$ (both "high-scale") and $log(W_{12}/u_0^6)$ ("lower-scale")

• find

- known terms insufficient for 3-fold fit, despite higher scales
- $\chi^2/dof < 1$ once $c_3^{(k)}$ included (errors dominated by r_1/a scale uncertainty)
- \Rightarrow uncertainties do not permit sensible fitting beyond $c_3^{(k)}$

- sources of uncertainty
 - (small) $\delta c_{1,2}^{(k)}$ (numerical integration, 3-loop PT)
 - scale uncertainties (r_1/a) for various am_ℓ/am_s
 - global $r_1 = 0.318(7)$ fm scale uncertainty
 - $-m_q$ extrapolation
 - residual NP contribution subtraction (estimated from $\langle aG^2 \rangle$ contribution, as per HPQCD/UKQCD, assigned 100% error)
 - any "instability" between the 3-fold and 5-fold fits
 - evolution to M_Z

RESULTS

• $\alpha_s(M_Z)$ values (c.f. HPQCD/UKQCD)

- error sources
 - $\delta(r_1/a)$, δr_1 , δc_2 , (δc_1), truncation [Figure]
 - truncation currently only from 3-fold vs 5-fold fit variation (under further investigation)

•
$$c_3^{(k)}$$
 values (c.f. HPQCD/UKQCD)

Observable	$c_3^{(k)}$	$c_3^{(k)}$	
	(our fit)	(HPQCD/UKQCD)	
$log(W_{11})$	-3.8(6)	-5(2)	
$log(W_{12})$	-4.0(9)	-5(2)	
$log\left(\frac{W_{12}}{u_0^6}\right)$	-1.7(8)	-2(1)	

• Excellent consistency, similar (so-far-quantified) errors, but safest analysis is one with highest scale $(log(W_{11}))$

$$[\alpha_s(M_Z)]_{lattice} = 0.1192(11)$$

SUMMARY

- high-precision α_s determination using HPQCD/UKQCD approach
- excellent consistency for 3 observables studied
- difficult to improve further without significant improvement in scale determinations [but already most precise of current determinations]
- excellent agreement with independent determinations

- averaging with recent non-lattice determinations yields \sim 0.6% accuracy determination

$$[\alpha_s(M_Z)]_{ave} = 0.1191(7)$$

for details see arXiv:0807.2020

• Thanks to D. Toussaint and C. De Tar

NOTE ADDED (re Friday HPQCD arXiv:0807.1687)

- re-analysis of 2005 work with 5-fold fits
- average over observables: $\alpha_V(7.5 \text{ GeV}) = 0.2121(25)$
- comparison of α_V (7.5 GeV) results

Source	3-fold fit	5-fold fit
$log(W_{11})$	0.2106	0.2121
$log(W_{12})$	0.2112	0.2125
$log\left(\frac{W_{12}}{u_0^6}\right)$	0.2112	0.2124
HPQCD08 (ave)		0.2121

• insufficient details on running/matching/conversion to comment/compare in detail BUT if

- take
$$\mu_{conv} = 7.5 \text{ GeV} [\Rightarrow \alpha_s(7.5 \text{ GeV}) = 0.1830(18)]$$

- use self-consistent 4-loop running+3-loop matching
- match at $rm_c(m_c)$, $rm_b(m_b)$ with $m_c(m_c) = 1.286(13)$ GeV, $m_b(m_b) = 4.164(25)$ GeV [Kuhn, Steinhauser, Sturm 2007], r = 2(1)

$$\alpha_s(M_Z) = 0.1196(8)(3)_{evol}$$

• final comparison nonetheless

