# Contributions of the disconnected diagrams in the hyperfine splitting in charmonium in the quenched case

Ludmila Levkova MILC/Fermilab Collaborations

[Lattice 2008, Williamsburg]

## **Motivation**



- ► Lattice calculations of the hyperfine splitting in charmonium show discrepancies with the experimental value of 117 MeV.
- ► The discrepancy is large (30-40%) in the quenched case. With improved actions it is still around 10 %.

### ► Possible reasons:

- Even the current state-of-the-art lattice actions do not reproduce the heavy quark dynamics within the charmonium states well.
- Neglected contributions of the disconnected diagrams in lattice computations

# Diagram contributions to the full propagator

$$F(t) = C(t) + D(t)$$

Connected and disconnected (singlet) diagrams:



ightharpoonup Origins of  $\lambda$ : anomaly, glueball interactions, light modes (dynamical case)

### Lattice method for disconnected diagrams

The disconnected part of the correlator is calculated as:

$$D(t) = \langle L(0)L^{\star}(t)\rangle, \qquad L(t) = \text{Tr}(\Gamma M^{-1})$$

Previous works explore the ratio:

$$\frac{D(t)}{C(t)} = \frac{F(t)}{C(t)} - 1 = \frac{A_f}{A_c} e^{(m_c - m_f)t} - 1.$$

Considering that the available lattices are quenched with respect to the charm quark, an appropriate fitting form would be

$$\frac{D(t)}{C(t)} = (m_c - m_f)t + \frac{m_c - m_f}{m_c}$$

if correlators are normalized appropriately.

### Our dynamical calculation

- We use 505 Asqtad 2+1 flavor lattices with  $V=40^3\times 96$  and  $a\approx 0.09$  fm. The valence quarks are clover type with tuned  $k_c=0.127$ . Improvements for the stochastic estimation of traces: Unbiased subtraction to O(3)
- ► Calculating the disconnected point-to-point propagator improves statistics. It has from one to three orders of magnitude smaller relative errors than the time-slice-to-time-slice disconnected propagator in the region where we have a signal.



### Asymptotic behavior of the disconnected propagator

► At large distances the dominant behavior of the connected propagator is:

$$C(r) \sim A \frac{e^{-m_c r}}{r^{\frac{3}{2}}},$$

► The disconnected propagator asymptotically will be:

$$D(r) \sim -\frac{d}{dm_c^2}C(r) \sim B \frac{e^{-m_c r}}{r^{\frac{1}{2}}}$$

Their ratio:

$$\frac{D(r)}{C(r)} \approx \frac{B}{A}r$$

where

$$\frac{B}{A} = m_c - m_f.$$

# Extracting the $\eta_c$ signal from D(r)

▶ D(r) is a sum of ground  $\eta_c$  state, excited states and light states which dominate at large distances (and flip the sign of D(r)).



### Fitting results for the $\eta_c$

$$D^{fit}(r) = \frac{B}{r^{\frac{1}{2}}} (e^{-m_c r} + e^{-m_c^* r}) + \frac{cB}{r^{\frac{3}{2}}} (e^{-m_c r} - e^{-m_c^* r}) + \frac{L}{r^{\frac{3}{2}}} e^{-m_l r}$$

- ▶ The light mass  $m_l = 0.43(1)$  is determined from a single exponential fit from r = 7 12. In the above fit it is fixed to that value.
- The connected  $\eta_c$  and  $\eta_c^{\star}$  masses,  $m_c = 1.1598(7)$  and  $m_c^{\star} = 1.51(5)$ , are known from fits to the connected propagator C(t). They are used as constants in the fit as well.
- ▶ The constant  $c \approx 7$  comes from various assumptions in our model. The fit is not very sensitive to its exact value.
- ▶ Results for fitting range r = 5 11:

$$\frac{B^{fit}}{A^{fit}} = m_c - m_f \in [-4, -1] \text{ MeV}$$

- Our fit favors disconnected diagram contribution which slightly increases the  $\eta_c$  mass. This is the opposite of the perturbative expectation of  $\sim 2.4$  MeV decrease.
- ▶ If the OZI rule for the  $J/\Psi$  holds  $\Rightarrow$  slight decrease of the hyperfine splitting.

### New fitting procedure

Approximation of the disconnected correlator in momentum space:

$$D(p^2) \sim \underbrace{\left(C + \frac{f}{p^2 + m_l^2}\right)}_{\lambda} \left(\frac{a}{p^2 + m_c^2} + \frac{b}{p^2 + m_c^{\star 2}}\right)^2$$

- lackbox Discretized version has  $p_{\mu}^2=2(1-\cos(2\pi/N_{\mu}))$  and should have the rotation symmetry violations accounted for Use the Fourier transformed discretized version for fits.
- Applying directly this form to the  $\eta_c$  data doesn't work. Subtract the light mode signal  $\left(\frac{L}{\frac{3}{2}}e^{-m_lr}\right)$  and the do the fit to a simplified form.

$$D(p^2) \sim C \left( \frac{a}{p^2 + m_c^2} + \frac{b}{p^2 + m_c^{*2}} \right)^2$$

▶ Determine the constants a, b by fits to the coordinate space data for D(r). The amplitude B of the ground disconnected correlator is:

$$B = Ca^2 \left(\frac{1}{128\pi^3 m_c}\right)^{1/2}$$

# Results of fitting $\eta_c$



▶ Fit:  $\chi^2 = 15/16$  df,  $m_c - m_f = -0.7(5)$  MeV.

# Results of fitting $\eta_c$



 $\qquad \qquad \textbf{Fit:} \ \ \chi^2 = 21/20 \ \ \text{df,} \ m_c - m_f = -5.5(4) \ \ \text{MeV}.$ 

# Results of fitting $J/\Psi$



Fit:  $\chi^2 \approx 1$ ,  $m_c - m_f < 0$ ,  $|m_c - m_f| < 1$  MeV.

### **Quenched calculation**

- Simplifying the problem: no propagating light modes (if there are no light glueballs)
- Fine lattices:  $28^3 \times 96$ , k = 0.127, 366 configurations,  $a \approx 0.09$  fm.
- ▶ Superfine lattices:  $48^3 \times 144$ , k = 0.130, 124 configurations,  $a \approx 0.063$  fm.
- Are there glue balls in  $D_{\eta_c}(r)$ ? Quenched fine lattices have same lattice spacing as unquenched. Quenched correlator doesn't change sign: small coupling to glueballs



### Quenched $\eta_c$ results on FINE lattices

The fits to D(r) are done with  $m_c=0.9781$ ,  $m_c^\star=1.330$ . The fitting range is r=4.3-7.8, (40 DOF) and the fit has  $\chi^2=1$ . We obtain: a=109(15), b=294(41). This means:  $m_c-m_f=-3.3(9){\rm MeV}$ .



### Quenched $\eta_c$ results on SUPERFINE lattices

The fits to D(r) are done with  $m_c=0.6509$ ,  $m_c^\star=0.8606$ . The fitting range is r=5.6-8, (32 DOF) and the fit has  $\chi^2=1$ . We obtain: a=131(17), b=246(38). This means:  $m_c-m_f=-3.1(8) {\rm MeV}$ .



# Quenched $J/\Psi$ results on FINE and SUPERFINE lattices

lacksquare Estimation:  $m_c-m_f<0$ ,  $|m_c-m_f|<1$  MeV



### **Summary and conclusions**

- ► We introduced a new fitting procedure which takes into account rotational symmetry violations. It gives consistent results with our previous fitting method.
- The quenched results for  $m_c m_f$  for the  $\eta_c$  are the same for two lattice spacings 0.09 and 0.06 fm: -3.3(9) and -3.1(8) MeV. This means that the disconnected diagram contributions increase the  $\eta_c$  mass. This conclusion is consistent with the dynamical result estimations.
- We can only estimate that the  $J/\Psi$  mass will be increased as well by about 1 MeV. Thus as a whole, the hyperfine splitting is slightly reduced by the disconnected diagrams contributions.
- ▶ Our  $\eta_c \sim 2000-2150$  MeV, physical is 2980 MeV. Will that affect the sign of  $m_c-m_f$ ? We are starting a calculation on superfine lattices at smaller k=0.117.