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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'SUSY invariance in the continuum 6
best seen in the superfield formulation
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'SUSY invariance in the continuum 6

best seen in the superfield formulation

space-time :
coordinate B Grassmann coordinate superfield

68 = [ dx [ a6 { L(@c:0)+60(:0)— L(@x0))
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'SUSY invariance in the continuum 6

best seen in the superfield formulation

space-time :
coordinate e Grassmann coordinate superfield

68 = [ dx [ a6 { L(@0)+60(:0)— L(@x.0))
= | dx [ d6 6.L(®x,6))
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'SUSY invariance in the continuum 6

best seen in the superfield formulation

space-time :
coordinate e Grassmann coordinate superfield

0S = f dx f d0 { L(®(x,0)+6®(x,0))—L(®(x,0))}
— f dx f do 0L (®(x,0)
~ [ax [d6[8+ 6] L(®x,6))
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'SUSY invariance in the continuum 6

best seen in the superfield formulation

space-time :
coordinate e Grassmann coordinate superfield

68 = [ dx [ a6 { L(@0)+60(:0)— L(@x.0))
= [ dx [ d6 6.L(®x0))

~ [ dx [ d6[8,+ 06| L(@x0))
— fdx ax =0
—[d6 9y=0
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'SUSY invariance in the continuum 6

best seen in the superfield formulation

space-time
coordinate

e Grassmann coordinate superfield

0S = f dx f d0 { L(®(x,0)+6®(x,0))—L(®(x,0))}
— f dx f do 0L (®(x,0)
~ [ dx [ d6[8,+ 06| L(@x0))

=0

—fdx6x=0

—[d6 9y=0
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

SUSY invariance on the lattice €

lattice analog

58 = 2 [ d6 { L(@(n,0)+50(n,6)— L(@1,0))
=3 f do 0L (®(n,0))
~ %[ d6[05+ 6V ] L(@wn0)
=0
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

SUSY invariance on the lattice €

lattice analog

sum of

lattice sites ™ | I_ lattice sites
08 = %f d0 { L(®(1,0)+5®(n,0))— L(9(n,0))}

= %:f de (5L(<I>(n,9)) difference operator
~ %[ a6[8y+ 6V ] L(@n,0))

—0 2V =0

—[d6 9y=0

L.attice 2008 at the College of Wiliam and Mary, Wiliamsburg, Virginia, USA, 2008 July 14



No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

SUSY invariance on the lattice €

lattice analog

sum of

lattice sites ™ | I_ lattice sites
08 = %f d0 { L(®(1n,0)+5®(n,0))— L(9(n,0))}

= %:f de 6‘5((1)(”’0)) difference operator
~ %[ a6[y+ 6V ] L(@n0)

—0 -2V =0

—[d6 9y=0

Most of them hold even on the lattice. But - - -

L.attice 2008 at the College of Wiliam and Mary, Wiliamsburg, Virginia, USA, 2008 July 14



No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

SUSY invariance on the lattice €

lattice analog

sum of

lattice sites ™ | I_ lattice sites
08 = %f d0 { L(®(1n,0)+5®(n,0))— L(9(n,0))}

=% f do 0L (®(n,0))

There Is a non-trivial step on the lattice.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

SUSY invariance on the lattice €

lattice analog

sum of

lattice sites ™ | I_ lattice sites
0S8 = %l f do {L(@(n,0)+5q>(n,9))—lj(q>(%

=2 [do 6L(@n0) <

There is a non-trivial step on the lattice. To go from
the 1st to 2nd line, we need a difference operator V
that satisfies the Leibniz rule!

V(oY) = (VO)¥ + ©(VYP)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'An obstacle to realize SUSY on the lattice @

Simple difference operators do not satisfy the
Leibniz rule on the lattice. For example,
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'An obstacle to realize SUSY on the lattice @

Simple difference operators do not satisfy the
Leibniz rule on the lattice. For example,

-forward difference operator

V(S (n)) = VN d(n)) !ﬁ(lflr_l) + ¢(n) (VU (n))

The position is different from n!

L.attice 2008 at the College of Wiliam and Mary, Wiliamsburg, Virginia, USA, 2008 July 14



No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'An obstacle to realize SUSY on the lattice @

Simple difference operators do not satisfy the
Leibniz rule on the lattice. For example,

-forward difference operator

V(S (n) = V(h(n)) !ﬁ(lflr_l) + ¢(n) (VU (n))

The position is different from n!

Indeed, all the known (local) difference operators
do not satisfy the Leibniz rule.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Our purpose 3

Is it possible to construct a difference
operator V satisfying the Leibniz rule on
the lattice?
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘Our purpose 3

Is it possible to construct a difference
operator V satisfying the Leibniz rule on
the lattice?

If we succeed in getting such a difference
operator V, we can realize lattice models with
the full exact supersymmetry!
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘Our purpose 3

Is it possible to construct a difference
operator V satisfying the Leibniz rule on
the lattice?

If we succeed in getting such a difference
operator V, we can realize lattice models with

the full exact supersymmetry!

Thus, It is worthwhile trying to find it, although
it must be a hard task!
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

‘Our purpose 6

mission in my talk
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g

Our purpose G

mission in my talk

1. Find a difference operator satisfying
the Leibniz rule.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Our purpose G

mission in my talk

1. Find a difference operator satisfying
the Leibniz rule.

2. Construct lattice models with the full
exact SUSY.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

To find a difference operator satisfying the Leib-
niz rule, we first generalize the difference opera-
tor and the field product as follows:
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

To find a difference operator satisfying the Leib-
niz rule, we first generalize the difference opera-
tor and the field product as follows:

» an extension of the difference
Vo(n) —> Do(n) = 2 D(m;n)d(m)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

To find a difference operator satisfying the Leib-
niz rule, we first generalize the difference opera-
tor and the field product as follows:

» an extension of the difference
Vo(n) —> Do(n) = 2 D(m;n)p(m)

forward difference
( V(+) & D(min) = Om,n+1 — Om,n )
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

To find a difference operator satisfying the Leib-
niz rule, we first generalize the difference opera-
tor and the field product as follows:

» an extension of the difference
Vo(n) —> Do(n) = 2 D(m;n)p(m)

» an extension of the field product
(Y (n) —> (P+Y)(n) = Py C(,m;n) (D) Y (m)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

To find a difference operator satisfying the Leib-
niz rule, we first generalize the difference opera-
tor and the field product as follows:

» an extension of the difference
Vo(n) —> Do(n) = 2 D(m;n)p(m)

» an extension of the field product
(Y (n) —> (P+Y)(n) = Py C(,m;n) (D) Y (m)

( normal product )
¢(n)lﬁ(n) & C(n,d;m)=0nidnm
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

An attempt 3

9,

Is it possible to construct a difference
operator D such that

D (@) = Dsif + pxDY

» an extension of the difference
Vo(n) —> Do(n) = 2 D(m;n)p(m)

» an extension of the field product
(Y (n) —> (P+Y)(n) = & C,m;n) O() Y (m)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

‘No-Go theorem 8

The answer is negative.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘No-Go theorem 33

The answer is negative.

No-Go Theorem

It iIs impossible to construct a differ-
ence operator and a field product that
satisfy the following 3 properties:

(1) translation Iinvariance
(2) locality
(3) Leibniz rule
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem 9
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance

D(m;n) = D(m—n) : difference operator
C(,m;n) = C(I-n,m—n) : field product
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance

D(m;n) = D(m—n) : difference operator
C(,m;n) = C(l-n,m—n) : field product

» locality (exponential damping)

exponentially
C(l,m)

>
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance
D(m;n) = D(m—n) : difference operator
C(,m;n) = C(l-n,m—n) : field product
» locality (exponential damping)
D(m) || = oo - 0

exponentially

o T

» Fourier transform
D@=XDmyzm  :z=cib,

é(v,w) =Y C(,m)viwm :v= e, w=er,
Lim 0<p, q,r<n
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance The locality allows z,v,w
D(m:n) = D(m—n) E:I%renx;ienngf(to anIannqus
C(,m;n) = C(I-n,m—n) with 2€>0. 4
» locality (exponential d / \ R
Dim) —22— I AN
exponentially 7 \K 1+€
C(lym) Illa lm| = oo > () 1-€
» Fourier transform uniformly convergent on ‘A

D@ =Z Dz | :z=el,

@(v,w) =Y C(l,m) viwm| :v=e'4,w=e",
bLm 0<p,q, r<2nm
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance The locality allows z,v,w
D(m:n) = D(m—n) B%emx;?nncglqto an annulus
C(Lm;n) = C(I-n,m—n) b 3¢ g

» locality (exponential d / \ —

Dim) —22— I AN
exponentially 7 \K 1+€
Chm) i oo 0 % 1-¢

» holomorphic functions (/um'formly convergent on A

D(z) = %D(m) g™ on A1 ={zl1-e<|zl<1+€}

Cvw) = Z Cbm) viw™) on Az = {v,wl1-€<Ivl,Iwl<1+€}
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem Qg

» translation invariance The locality allows z,v,w
D(m:n) = D(m—n) B%emx;?nncglqto an annulus
C(Lm;n) = C(I-n,m—n) b 3¢ g

» locality & holomorphy / \ LB W

Dim) —22— I AN
exponentially 7 \){\ 1+€
Chm) i oo 0 % 1-¢

» holomorphic functions (/um'formly convergent on ‘A

D(z) = %D(m) g™ on A1 ={zl1-e<|zl<1+€}

C(vw) EIZ’:nC(l,m) viw™m on Az = {v,wl1-e<|v],|wl<1+€}
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = DP+y + d+DY
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(9+Y) = Do+ + ¢p=xDY
o Covw) (ﬁ(vw)—ﬁ(v)—ﬁ(w)) =0 on A2
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

— ﬁ(vw)—ﬁ(v)—DA(w) =0 on f('2={v,weﬂ2|@(v,w)qt0}
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dow)-D(»)-D(w) =0 on ﬂ'2={v,weﬂ2|@(v,w)¢0}

U

By virtue of the identity theorem on
holomorphic functions, A2 can be
extended to A>.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dw)-D»)-D(w) =0 on Ar={v,weA2|C(y,w)#0)
& Dow)=D(»)-D(w) =0 on A2
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dw)-D»)-D(w) =0 on Ar={v,weA2|C(y,w)#0)
& Doow)-D)-Dw) =0 on A2
& D) =pBlogv on A
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dw)-D»)-D(w) =0 on Ar={v,weA2|C(y,w)#0)
& Dow)=D(»)=D(w) =0 on A2

& ﬁ(v) =plogy on Ax
non-holomorphic/non-local
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dw)-D»)-D(w) =0 on Ar={v,weA2|C(y,w)#0)
& Dow)=D(»)=D(w) =0 on A2

& ﬁ(v) =plogy on A1
non-holomorphic/non-local

U
p=0
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

A proof of the No-Go theorem T

Leibniz rule

D(¢+y) = Doy + ¢xDY
& Cv,w) (Dw)-D()-D(w)) =0 on A2

& Dw)-D»)-D(w) =0 on Ar={v,weA2|C(y,w)#0)
& Dow)=D(»)=D(w) =0 on A2

& ﬁ(v) =plogy on A1
non-holomorphic/non-local

U
o D) =0 = trivial!! B=0 -
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Multi-flavor extension G

To overcome the No-Go theorem, we further try to
extend the previous analysis to multi-flavors.

‘ ‘ ‘ -flavor indices
(D$)’(n) = = % D*mi3n) ¢%(m)
() m=3 2 C*PS(l,min) D Y (m)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Multi-flavor extension G

To overcome the No-Go theorem, we further try to
extend the previous analysis to multi-flavors.

‘ ‘ ‘ -flavor indices
(D$)’(n) = Z % D*mi3n) ¢%(m)
() m=3 2 C*PS(l,min) D Y (m)

However, the No-Go theorem still holds.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Multi-flavor extension G

To overcome the No-Go theorem, we further try to

extend the previous analysis to multi-flavors.
‘ ‘ ‘ -flavor indices

(D$)’(n) = Z % D*mi3n) ¢%(m)
() m=3 2 C1,msn) $UI) YP(m)

However, the No-Go theorem still holds. This is be-
cause the proof can reduce to the 1 flavor case by
diagonalizing D(z) = S D%(m)zm such that D) =
6P Db(z).
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

A loophole to escape the No-Go theorem@ .

But there exists a loophole to escape the No-Go
theorem! A key observation is that
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

A loophole to escape the No-Go theorem@ .

But there exists a loophole to escape the No-Go
theorem! A key observation is that

a linear combination of an infinite number
of holomorphic functions is NOT necessari-
ly holomorphic.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

A loophole to escape the No-Go theorem@ .

But there exists a loophole to escape the No-Go
theorem! A key observation is that

a linear combination of an infinifte number
of holomorphic functions is NOT necessari-
ly holomorphic.

=>The holomorphy of D%(z) and C%<(y, w) is NOT nec-
essarily preserved in diagonalizing D ab(z) with infin-
ite flavors.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

A loophole to escape the No-Go theorem@ .

But there exists a loophole to escape the No-Go
theorem! A key observation is that

a linear combination of an infinifte number
of holomorphic functions is NOT necessari-
ly holomorphic.

=>The holomorphy of D%(z) and C%<(y, w) is NOT nec-
essarily preserved in diagonalizing D ab(z) with infin-
ite flavors. |

= The previous proof cannot be applied to an infinite
number of flavors!!.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.

/—arbitmry
D“b(m;n) = d(a—b) (5m—n,a—b — 5m—n,—(a—b))

Cabc(l,m;n) — 5l—n,b 5n—m,a 6a+b,c
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.

/—arbitmry
D"b(m;n) = d(a—b) (5m—n,a—b — 5m—n,—(a—b))

Cabc(l,m;n) = 5l—n,b (5n—m,a 6a+b,c

characteristic features
* translationally invariant
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.

/—arbitmry
D“b(m;n) = d(a—b) (5m-n,a-b - 5m-n,—(a—b))

Cabc(l,m;n) = 5l—n,b (5n—m,a 6a+b,c

characteristic features

* translationally invariant
* local (= holomorphic)

ﬁ“b(z) = d(a—Db) (za—b — zb—“) on Ai
6’“bc(v,w) = §atb,cybyy—a on A2
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.
| lattice sites

-flavors
D"b(m;n) = d(a—b) (5m—n,a—|b — 5m—n,—(a|—b))
C“bc(l,m;n) = 5l—|n,ll) 5n—m,clz 6a+b,c

flavors
lattice sites

characteristic features

* translationally invariant
* local (= holomorphic)

* hon-trivial connection between lattice sites and
flavor indices
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.
| lattice sites

-flavors
D"b(m;n) = d(a—b) (5m—n,a—|b — 5m—n,—(a|—b))
C"bc(l,m;n) = 5l—|n,ll) (5n—m,¢|1 6a+b,c

flavors
lattice sites

characteristic features

* translationally invariant
* local (= holomorphic)

* hon-trivial connection between lattice sites and
flavor indices = need for infinite flavors!
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

_A solution with infinite flavors €

We find a solution satisfying the Leibniz rule.

D mzn) = d@a—b) (6m=-n,a—b — Om=n,—(a—b))
Cabc(l,m;n) = 5l—n,b (5n—m,a 6a+b,c

characteristic features

* translationally invariant
* local (= holomorphic)

* hon-trivial connection between lattice sites and
flavor indices = need for infinite flavors!

* local in the space direction but "non-local” in
the flavor direction!
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'Matrix representation <
flavors— I
o ) <=, ¢
lattice sites falds n=i+j :]natrix
,%90
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
Vi

Matrix representation ©
flavors—— =
o PUn) —2Ls ¢;
lattice sites fialds n=i+j r]natrix

(DP)(n) < > L4, 8]
difference operator / commutator
djj=d@—j)

D“b(m;n) = d(a—b) (5m—n,a—b — 5m—n,—(a—b))
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

'Matrix representation <
Sflavors— =
o PUn) —2Ls ¢;
lattice sites fialds n=i+j r]natrix

(DP)(n) < > [d, 8]

difference operator commutator
(+)“(n) < > (BV)ji=20i i
field product matrix product
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
Vi

Matrix representation ©

flavors—— a=i—j

P4 (n) «< > O

fields "="Y  matrix

lattice sites

(DP)(n) < > [d, 8]

difference operator commutator
(+h)“(n) < > (BV);i=2di i
field product matrix product
D (@) = Do + dpxDY < > ld, ¢y ]=ld,¢ply+old,y]
Leibniz rule commutator algebra
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Matrix representation ©

flavors—— a=i—j

% n) < > O

fields "="Y  matrix

lattice sites

(DP)(n) < > [d, 8]

difference operator commutator
(+h)“(n) < > (BV);i=2di i
field product matrix product
D(+) = Doy + d+DY < > ld, oy ]=ld,¢ply+9old,y]
Leibniz rule commutator algebra
Ea] %} ¢ > tr] |
summation trace
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

N=2 SUSY QM on the lattice G

S = tr[—3-([d, $1)> — % (Fld-y1-1d.J1Y)
) _ _
+ 64 + NTdy + Ao ]
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

N=2 SUSY QM on the lattice G

S = tr[—5-([d,1)* =5 (Fld 1-1d:-F1p)
) _ _
+2-0* + Ny + Ay |

Properties
1. the full exact SUSY invariance
2. superfield formulation
3. Q@-exact form
4. two Nicolai mappings
5. fermion doubling
6. non-commutative nature
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

‘N=2 SUSY QM on the lattice G

S = tr[—=5-([d,81)* =5 (Fld p1-1d:F1p)
) _ _
+2-0* + Ny + Ay |

Properties
1. the full exact SUSY invariance

0 = ey—ey
{ oY = e(ild, ] +1¢?)
oY = &(—ild,Pl+A¢%)
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘N=2 SUSY QM on the lattice G

S = tr[—=5-([d,81)* =5 (Fld p1-1d:F1p)
) _ _
+2-0* + Ny + Ay |

Properties
1. the full exact SUSY invariance
2. superfield formulation

= [aBa6 tr[ LDoDo + W) ]
®(6,0) = ¢ + 0y — Oy + 0F

D—za—y+10[d 1, {0,0} =21d, ]
5_166—0+10[d 1, 02=02=
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘N=2 SUSY QM on the lattice G

S = tr[—3-([d,$1)> =% (Pl y1-[d.J1Y)
) _ _
+ 64 + NTdY + Ao ]

Properties
1. the full exact SUSY invariance
2. superfield formulation
3. Q-exact form

S=00tr[ - 57y —4 3]

‘ ‘ supercharges
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

‘N=2 SUSY QM on the lattice G

S = tr[—3-([d,$1)> =% (Pl y1-[d.J1Y)
) _ _
+ 64 + NTdY + Ao ]

Properties
1. the full exact SUSY invariance
2. superfield formulation
3. Q-exact form
4. two Nicolal mappings < two supercharges

&0 = —[d,$] +1¢?2
£? = +[d,p] + A2
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

N=2 SUSY QM on the lattice G

S = tr[—3-([d,$1)> =% (Pl y1-[d.J1Y)
) _ _
+ 64 + NTdY + Ao ]

Properties
1. the full exact SUSY invariance
2. superfield formulation
3. Q-exact form
4. two Nicolal mappings
5. fermion doubling
We can add a supersymmetric Wilson term.
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

N=2 SUSY QM on the lattice G

S = tr[—3-([d,$1)> =% (Pl y1-[d.J1Y)
) _ _
+ 64 + NTdY + Ao ]

Properties
1. the full exact SUSY invariance
2. superfield formulation
3. Q-exact form
4. two Nicolai mappings
5. fermion doubling
6. non-commutative nature

Y Y
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

d=2 N=2 WZ model on the lattice @

S = tr|—[di &1 [dis$1 =i vildis xo 1= 00— 7il dis X -]
+A2¢T2¢2 + AX-Ox; + AX_x: 9
+ A/\7+¢7LX— + A/\_/+X—¢Jr ]

Properties
1. the full exact SUSY invariance
2. four Nicolai mappings
3. fermion doubling
4. non-commutative nature
5. The spinor index was introduced as the

direct product. | spinor index
112:j1j2 1112,]1)2 ll)l-matrlx
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

Future problems 17

We have a lot of things to do - - -
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?

» How to introduce gauge fields?

» Can spinor/vector indices be embedded in matrices?
» Numerical simulation?

» other solutions?

» Do we really need the holomorphy?

» Any connection to non-commutative geometry?
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g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?
& flavor-reduction?
Keep only finite flavors and discard the others by hand!

= Our models reduce to lattice models of finite
flavors with (partial) SUSY breaking!
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?
& flavor-reduction?
Keep only finite flavors and discard the others by hand!

= Our models reduce to lattice models of finite
flavors with (partial) SUSY breaking!

& extra dimensions?
infinite flavors «— KK modes?

Can we add "KK mass" terms in order for finite flavors
to survive at low energies???
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?
» How to introduce gauge fields?
non-commutative gauge theory??

AuAv F AvAu
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?
» How to introduce gauge fields?
» Can spinor/vector indices be embedded in matrices?

We have here introduced the spinor indices
as the direct product but they can probably
be embedded in matrices???
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?

» How to introduce gauge fields?

» Can spinor/vector indices be embedded in matrices?
» Numerical simulation?

Our models can be defined for a finite lat-
tice size (finite matrix).
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?

» How to introduce gauge fields?

» Can spinor/vector indices be embedded in matrices?
» Numerical simulation?

» other solutions?

We have not succeeded to find other solu-
tions to satisfy the Leibniz rule.

L.attice 2008 at the College of Wiliam and Mary, Wiliamsburg, Virginia, USA, 2008 July 14



No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?

» How to introduce gauge fields?

» Can spinor/vector indices be embedded in matrices?
» Numerical simulation?

» other solutions?

» Do we really need the holomorphy?

Is the analyticity of real functions enough
to prove the No-Go theorem???
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No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice
g

Future problems G

We have a lot of things todo - - -

» How to manage infinite flavors?

» How to introduce gauge fields?

» Can spinor/vector indices be embedded in matrices?
» Numerical simulation?

» other solutions?

» Do we really need the holomorphy?

» Any connection to non-commutative geometry?

Y+ Yo
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