

No-Go Theorem of Leibniz Rule and Supersymmetry on the Lattice

Makoto Sakamoto (Kobe Univ.)

in collaboration with M. Kato & H. So based on JHEP 05 (2008) 057

space-time Grassmann coordinate superfield
$$\delta S = \int dx \int d\theta \left\{ \mathcal{L}(\Phi(x,\theta) + \delta \Phi(x,\theta)) - \mathcal{L}(\Phi(x,\theta)) \right\}$$
$$= \int dx \int d\theta \, \delta \mathcal{L}(\Phi(x,\theta))$$

space-time Grassmann coordinate superfield
$$\delta S = \int dx \int d\theta \left\{ \mathcal{L}(\Phi(x,\theta) + \delta \Phi(x,\theta)) - \mathcal{L}(\Phi(x,\theta)) \right\}$$
$$= \int dx \int d\theta \, \delta \mathcal{L}(\Phi(x,\theta))$$
$$\sim \int dx \int d\theta \, \left[\partial_{\theta} + \theta \, \partial_{x} \right] \mathcal{L}(\Phi(x,\theta))$$

space-time Grassmann coordinate Superfield
$$\delta S = \int dx \int d\theta \left\{ \mathcal{L}(\Phi(x,\theta) + \delta \Phi(x,\theta)) - \mathcal{L}(\Phi(x,\theta)) \right\}$$

$$= \int dx \int d\theta \, \delta \mathcal{L}(\Phi(x,\theta))$$

$$\sim \int dx \int d\theta \left[\frac{\partial_{\theta}}{\partial \theta} + \theta \frac{\partial_{x}}{\partial x} \right] \mathcal{L}(\Phi(x,\theta))$$

$$- \int dx \, \partial_{x} = 0$$

$$- \int d\theta \, \partial_{\theta} = 0$$

space-time Grassmann coordinate Superfield
$$\delta S = \int dx \int d\theta \left\{ \mathcal{L}(\Phi(x,\theta) + \delta \Phi(x,\theta)) - \mathcal{L}(\Phi(x,\theta)) \right\}$$

$$= \int dx \int d\theta \, \delta \mathcal{L}(\Phi(x,\theta))$$

$$\sim \int dx \int d\theta \left[\frac{\partial_{\theta}}{\partial \theta} + \theta \frac{\partial_{x}}{\partial x} \right] \mathcal{L}(\Phi(x,\theta))$$

$$= 0$$

$$\int dx \, \partial_{\theta} = 0$$

lattice analog

$$\delta S = \sum_{n} \int d\theta \left\{ \mathcal{L}(\Phi(n,\theta) + \delta\Phi(n,\theta)) - \mathcal{L}(\Phi(n,\theta)) \right\}$$

$$= \sum_{n} \int d\theta \, \delta \mathcal{L}(\Phi(n,\theta))$$

$$\sim \sum_{n} \int d\theta \left[\partial_{\theta} + \theta \nabla \right] \mathcal{L}(\Phi(n,\theta))$$

$$= 0$$

lattice analog

lattice sites
$$\delta S = \sum_{n} \int d\theta \left\{ \mathcal{L}(\Phi(n,\theta) + \delta\Phi(n,\theta)) - \mathcal{L}(\Phi(n,\theta)) \right\}$$

$$= \sum_{n} \int d\theta \, \delta \mathcal{L}(\Phi(n,\theta)) \quad \text{difference operator}$$

$$\sim \sum_{n} \int d\theta \, \left[\frac{\partial_{\theta}}{\partial_{\theta}} + \theta \, \nabla \right] \mathcal{L}(\Phi(n,\theta))$$

$$= 0$$

$$- \int d\theta \, \partial_{\theta} = 0$$

lattice analog

lattice sites
$$\delta S = \sum_{n} \int d\theta \left\{ \mathcal{L}(\Phi(n,\theta) + \delta\Phi(n,\theta)) - \mathcal{L}(\Phi(n,\theta)) \right\}$$

$$= \sum_{n} \int d\theta \, \delta \mathcal{L}(\Phi(n,\theta)) \quad \text{difference operator}$$

$$\sim \sum_{n} \int d\theta \left[\frac{\partial_{\theta}}{\partial_{\theta}} + \theta \nabla \right] \mathcal{L}(\Phi(n,\theta))$$

$$= 0 \quad \int_{n} \nabla = 0$$

Most of them hold even on the lattice. But • • •

lattice analog

lattice sites
$$\delta S = \sum_{n} \int d\theta \left\{ \mathcal{L}(\Phi(n,\theta) + \delta \Phi(n,\theta)) - \mathcal{L}(\Phi(n,\theta)) \right\}$$

$$= \sum_{n} \int d\theta \, \delta \mathcal{L}(\Phi(n,\theta))$$

There is a non-trivial step on the lattice.

lattice analog

lattice sites
$$\delta S = \sum_{n} \int d\theta \left\{ \mathcal{L}(\Phi(n,\theta) + \delta\Phi(n,\theta)) - \mathcal{L}(\Phi(n,\theta)) \right\}$$

$$= \sum_{n} \int d\theta \, \delta \mathcal{L}(\Phi(n,\theta)) \, \bullet$$

There is a non-trivial step on the lattice. To go from the 1st to 2nd line, we need a difference operator ∇ that satisfies the Leibniz rule!

$$\nabla(\Phi\Psi) = (\nabla\Phi)\Psi + \Phi(\nabla\Psi)$$

An obstacle to realize SUSY on the lattice

Simple difference operators do not satisfy the Leibniz rule on the lattice. For example,

An obstacle to realize SUSY on the lattice

Simple difference operators do not satisfy the Leibniz rule on the lattice. For example,

forward difference operator $\nabla^{(+)}(\phi(n)\psi(n)) = \nabla^{(+)}(\phi(n))\psi(\underline{n+1}) + \phi(n)(\nabla^{(+)}\psi(n))$ The position is different from n!

An obstacle to realize SUSY on the lattice

Simple difference operators do not satisfy the Leibniz rule on the lattice. For example,

forward difference operator
$$\nabla^{(+)}(\phi(n)\psi(n)) = \nabla^{(+)}(\phi(n))\psi(\underline{n+1}) + \phi(n)(\nabla^{(+)}\psi(n))$$
The position is different from n!

Indeed, all the known (local) difference operators do not satisfy the Leibniz rule.

Is it possible to construct a difference operator ∇ satisfying the Leibniz rule on the lattice?

Is it possible to construct a difference operator ∇ satisfying the Leibniz rule on the lattice?

If we succeed in getting such a difference operator ∇, we can realize lattice models with the full exact supersymmetry!

Is it possible to construct a difference operator ∇ satisfying the Leibniz rule on the lattice?

If we succeed in getting such a difference operator ∇, we can realize lattice models with the full exact supersymmetry!

Thus, It is worthwhile trying to find it, although it must be a hard task!

mission in my talk

mission in my talk

1. Find a difference operator satisfying the Leibniz rule.

mission in my talk

- 1. Find a difference operator satisfying the Leibniz rule.
- 2. Construct lattice models with the full exact SUSY.

To find a difference operator satisfying the Leibniz rule, we first generalize the difference operator and the field product as follows:

To find a difference operator satisfying the Leibniz rule, we first generalize the difference operator and the field product as follows:

▶ an extension of the difference

$$\nabla \phi(n) \longrightarrow D\phi(n) \equiv \sum_{m} D(m;n)\phi(m)$$

To find a difference operator satisfying the Leibniz rule, we first generalize the difference operator and the field product as follows:

▶ an extension of the difference

$$\nabla \phi(n) \longrightarrow D\phi(n) \equiv \sum_{m} D(m;n)\phi(m)$$

$$\text{forward difference}$$

$$\nabla^{(+)} \leftrightarrow D(m;n) = \delta_{m,n+1} - \delta_{m,n}$$

To find a difference operator satisfying the Leibniz rule, we first generalize the difference operator and the field product as follows:

▶ an extension of the difference

$$\nabla \phi(n) \longrightarrow D\phi(n) \equiv \sum_{m} D(m;n)\phi(m)$$

▶ an extension of the field product

$$\phi(n)\psi(n) \longrightarrow (\phi*\psi)(n) \equiv \sum_{l,m} C(l,m;n)\phi(l)\psi(m)$$

To find a difference operator satisfying the Leibniz rule, we first generalize the difference operator and the field product as follows:

▶ an extension of the difference

$$\nabla \phi(n) \longrightarrow D\phi(n) \equiv \sum_{m} D(m;n)\phi(m)$$

▶ an extension of the field product

$$\phi(n)\psi(n) \longrightarrow (\phi*\psi)(n) \equiv \sum_{l,m} C(l,m;n) \phi(l) \psi(m)$$

$$\begin{pmatrix} normal\ product \\ \phi(n)\psi(n) \leftrightarrow C(n,l;m) = \delta_{n,l}\delta_{n,m} \end{pmatrix}$$

Is it possible to construct a difference operator D such that

$$D(\phi*\psi) \stackrel{?}{=} D\phi*\psi + \phi*D\psi$$

an extension of the difference

$$\nabla \phi(n) \longrightarrow D\phi(n) \equiv \sum_{m} D(m;n)\phi(m)$$

▶ an extension of the field product

$$\phi(n)\psi(n) \longrightarrow (\phi*\psi)(n) \equiv \sum_{l,m} C(l,m;n)\phi(l)\psi(m)$$

No-Go theorem

The answer is negative.

No-Go theorem

The answer is negative.

No-Go Theorem

It is impossible to construct a difference operator and a field product that satisfy the following 3 properties:

- (1) translation invariance
- (2) locality
- (3) Leibniz rule

▶ translation invariance

D(m;n) = D(m-n) : difference operator C(l,m;n) = C(l-n,m-n) : field product

▶ translation invariance

$$D(m;n) = D(m-n)$$
 : difference operator $C(l,m;n) = C(l-n,m-n)$: field product

► locality (exponential damping)

$$D(m) \xrightarrow{|m| \to \infty} 0$$

$$C(l,m) \xrightarrow{exponentially} 0$$

▶ translation invariance

$$D(m;n) = D(m-n)$$
 : difference operator $C(l,m;n) = C(l-n,m-n)$: field product

locality (exponential damping)

$$D(m) \xrightarrow{|m| \to \infty} 0$$

$$C(l,m) \xrightarrow{exponentially} 0$$

▶ Fourier transform

$$\hat{D}(z) \equiv \sum_{m} D(m) z^{m} : z = e^{ip},$$

$$\hat{C}(v,w) \equiv \sum_{l,m} C(l,m) v^{l} w^{m} : v = e^{iq}, w = e^{ir},$$

$$0 \le p, q, r < 2\pi$$

▶ translation invariance

$$D(m;n) = D(m-n)$$

$$C(l,m;n) = C(l-n,m-n)$$

▶ locality (exponential d

$$D(m) \xrightarrow{|m| \to \infty} 0$$

$$C(l,m) \xrightarrow{exponentially} 0$$

► Fourier transform

$$\hat{C}(z) \equiv \sum_{m} D(m) z^{m}$$

$$\hat{C}(v,w) \equiv \sum_{l,m} C(l,m) v^{l} w^{m}$$

The locality allows z, v, wto extend to an annulus domain \mathcal{A} with $\exists \epsilon > 0$. **≻**Re

uniformly convergent on A

:
$$z = e^{ip}$$
,
: $v = e^{iq}$, $w = e^{ir}$,
 $0 \le p$, q , $r < 2\pi$

► translation invariance

$$D(m;n) = D(m-n)$$

$$C(l,m;n) = C(l-n,m-n)$$

► locality (exponential d

$$D(m) \xrightarrow{|m| \to \infty} 0$$

$$C(l,m) \xrightarrow{exponentially} 0$$

► holomorphic functions

$$\hat{C}(v,w) \equiv \sum_{m}^{\infty} D(m) z^{m}$$

$$\hat{C}(v,w) \equiv \sum_{l,m}^{\infty} C(l,m) v^{l} w^{m}$$

The locality allows z, v, w to extend to an annulus domain \mathcal{A} I_{m} with $\exists \epsilon > 0$. z, v, w $\downarrow c$ \downarrow

-uniformly convergent on A

on
$$\mathcal{H}_1 = \{z | 1 - \epsilon < |z| < 1 + \epsilon\}$$

on $\mathcal{H}_2 = \{v, w | 1 - \epsilon < |v|, |w| < 1 + \epsilon\}$

► translation invariance

$$D(m;n) = D(m-n)$$

$$C(l,m;n) = C(l-n,m-n)$$

► locality ↔ holomorphy

$$D(m) \xrightarrow{|m| \to \infty} 0$$

$$C(l,m) \xrightarrow{exponentially} 0$$

▶ holomorphic functions

$$\hat{C}(v,w) \equiv \sum_{m}^{\infty} D(m) z^{m}$$

$$\hat{C}(v,w) \equiv \sum_{l,m}^{\infty} C(l,m) v^{l} w^{m}$$

The locality allows z, v, wto extend to an annulus domain \mathcal{H} with $\exists \epsilon > 0$. \overline{z}, v, w **≻**Re

uniformly convergent on A

on
$$\mathcal{H}_1 = \{z | 1 - \epsilon < |z| < 1 + \epsilon\}$$

on $\mathcal{H}_2 = \{v, w | 1 - \epsilon < |v|, |w| < 1 + \epsilon\}$

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

Leibniz rule

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

By virtue of the identity theorem on holomorphic functions, \mathcal{H}'_2 can be extended to \mathcal{H}_2 .

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0$$
 on \mathcal{A}_2

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(v) = \beta \log v \quad \text{on } \mathcal{A}_1$$

Leibniz rule

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(v) = \beta \log v \quad \text{on } \mathcal{A}_1$$

-non-holomorphic/non-local

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0$$
 on \mathcal{A}_2

$$\beta=0$$

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi$$

$$\Leftrightarrow \hat{C}(v,w) (\hat{D}(vw) - \hat{D}(v) - \hat{D}(w)) = 0 \text{ on } \mathcal{A}_2$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0 \quad \text{on } \mathcal{H}'_2 = \{v, w \in \mathcal{H}_2 | \hat{C}(v, w) \neq 0\}$$

$$\Leftrightarrow \hat{D}(vw) - \hat{D}(v) - \hat{D}(w) = 0$$
 on \mathcal{A}_2

$$\Leftrightarrow \hat{D}(v) = 0 \implies \text{trivial!!} \qquad \beta = 0$$

Multi-flavor extension

To overcome the No-Go theorem, we further try to extend the previous analysis to multi-flavors.

$$(D\phi)^{b}(n) \equiv \sum_{a} \sum_{m} D^{ab}(m;n) \phi^{a}(m)$$

$$(\phi*\psi)^{c}(n) \equiv \sum_{a,b} \sum_{l,m} C^{abc}(l,m;n) \phi^{a}(l) \psi^{b}(m)$$

Multi-flavor extension

To overcome the No-Go theorem, we further try to extend the previous analysis to multi-flavors.

$$(D\phi)^{b}(n) \equiv \sum_{a} \sum_{m} D^{ab}(m;n) \phi^{a}(m)$$

$$(\phi*\psi)^{c}(n) \equiv \sum_{a,b} \sum_{l,m} C^{abc}(l,m;n) \phi^{a}(l) \psi^{b}(m)$$

However, the No-Go theorem still holds.

Multi-flavor extension

To overcome the No-Go theorem, we further try to extend the previous analysis to multi-flavors.

$$(D\phi)^{b}(n) \equiv \sum_{a} \sum_{m} D^{ab}(m;n) \phi^{a}(m)$$

$$(\phi*\psi)^{c}(n) \equiv \sum_{a,b} \sum_{l,m} C^{abc}(l,m;n) \phi^{a}(l) \psi^{b}(m)$$

However, the No-Go theorem still holds. This is because the proof can reduce to the 1 flavor case by diagonalizing $\hat{D}^{ab}(z) \equiv \sum D^{ab}(m)z^m$ such that $\hat{D}^{ab}(z) = \delta^{ab}D^b(z)$.

But there exists a loophole to escape the No-Go theorem! A key observation is that

But there exists a loophole to escape the No-Go theorem! A key observation is that

a linear combination of an *infinite* number of holomorphic functions is NOT necessarily holomorphic.

But there exists a loophole to escape the No-Go theorem! A key observation is that

a linear combination of an *infinite* number of holomorphic functions is NOT necessarily holomorphic.

 \Rightarrow The holomorphy of $\hat{D}^{ab}(z)$ and $\hat{C}^{abc}(v,w)$ is NOT necessarily preserved in diagonalizing $\hat{D}^{ab}(z)$ with infinite flavors.

But there exists a loophole to escape the No-Go theorem! A key observation is that

a linear combination of an *infinite* number of holomorphic functions is NOT necessarily holomorphic.

- \Rightarrow The holomorphy of $\hat{D}^{ab}(z)$ and $\hat{C}^{abc}(v,w)$ is NOT necessarily preserved in diagonalizing $\hat{D}^{ab}(z)$ with infinite flavors.
- ⇒The previous proof cannot be applied to an infinite number of flavors!!.

We find a solution satisfying the Leibniz rule.

$$D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$$

$$C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$$

We find a solution satisfying the Leibniz rule.

 $D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$ $C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$

characteristic features

★ translationally invariant

We find a solution satisfying the Leibniz rule.

 $D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$ $C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$

- **★** translationally invariant
- **★ local (= holomorphic)**

$$\hat{D}^{ab}(z) = d(a-b) \left(z^{a-b} - z^{b-a} \right) \quad \text{on } \mathcal{A}_1$$

$$\hat{C}^{abc}(v,w) = \delta^{a+b,c} v^b w^{-a} \quad \text{on } \mathcal{A}_2$$

We find a solution satisfying the Leibniz rule.

$$D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$$

$$C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$$

$$lattice sites$$

- **★** translationally invariant
- **★ local (= holomorphic)**
- ★ non-trivial connection between lattice sites and flavor indices

We find a solution satisfying the Leibniz rule.

$$D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$$

$$C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$$

$$lattice sites$$

- **★** translationally invariant
- ★ local (= holomorphic)
- **★** non-trivial connection between lattice sites and flavor indices ⇒ need for infinite flavors!

We find a solution satisfying the Leibniz rule.

$$D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right)$$

$$C^{abc}(l,m;n) = \delta_{l-n,b} \delta_{n-m,a} \delta_{a+b,c}$$

- **★** translationally invariant
- **★ local (= holomorphic)**
- **★ non-trivial connection between lattice sites and flavor indices ⇒ need for infinite flavors!**
- **★ local in the space direction but "non-local" in the flavor direction!**

$$\begin{array}{c} flavors & \phi^a(n) & \stackrel{a=i-j}{\longleftarrow} & \phi_{ij} \\ fields & \stackrel{m=i+j}{\longleftarrow} & \text{matrix} \\ & (D\phi)^a(n) & \longleftarrow & [d,\phi]_{ij} \\ & \text{difference operator} & \text{commutator} \\ & d_{ij}=d(i-j) \\ & D^{ab}(m;n) = d(a-b) \left(\delta_{m-n,a-b} - \delta_{m-n,-(a-b)}\right) \end{array}$$

$$(D\phi)^a(n) \longleftrightarrow [d,\phi]_{ij}$$
 difference operator commutator

$$(\phi*\psi)^a(n) \longleftrightarrow (\phi\psi)_{ij} = \sum_k \phi_{ik} \psi_{kj}$$
 field product matrix product

$$\begin{array}{c} flavors & \phi^{a}(n) & \stackrel{a=i-j}{\longleftarrow} \phi_{ij} \\ lattice \ sites & fields & n=i+j \end{array} \quad \phi_{ij}$$

$$(D\phi)^a(n) \longleftrightarrow [d,\phi]_{ij}$$
 difference operator commutator

$$(\phi*\psi)^a(n) \longleftrightarrow (\phi\psi)_{ij} = \sum_k \phi_{ik} \psi_{kj}$$
 field product matrix product

$$D(\phi*\psi) = D\phi*\psi + \phi*D\psi \longleftrightarrow [d,\phi\psi] = [d,\phi]\psi + \phi[d,\psi]$$
Leibniz rule commutator algebra

$$\begin{array}{ccc} \sum\limits_{\substack{a & n \\ \\ \end{array}} & \longleftarrow & \text{tr} \left[\quad \right] \\ \text{summation} & \text{trace} \end{array}$$

$$S = \text{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\sqrt{[d,\psi]} - [d,\sqrt{[]}\psi)\right] + \frac{\lambda^2}{2}\phi^4 + \lambda\sqrt{[\psi}\phi\psi + \lambda\sqrt{[\psi}\psi\phi]$$

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation
- 3. Q-exact form
- 4. two Nicolai mappings
- 5. fermion doubling
- 6. non-commutative nature

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

Properties

1. the full exact SUSY invariance

$$\begin{cases} \delta \phi = \epsilon \psi - \overline{\epsilon} \psi \\ \delta \psi = \epsilon (i[d, \phi] + \lambda \phi^2) \\ \delta \psi = \overline{\epsilon} (-i[d, \phi] + \lambda \phi^2) \end{cases}$$

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation

$$S = \int d\overline{\theta} d\theta \operatorname{tr} \left[\frac{1}{2} \overline{D} \Phi D \Phi + W(\Phi) \right]$$

$$\begin{cases} \Phi(\theta, \overline{\theta}) = \phi + \theta \overline{\psi} - \overline{\theta} \psi + \theta \overline{\theta} F \\ D = i \frac{\partial}{\partial \overline{\theta}} + i \theta [d,], & \{Q, \overline{Q}\} = 2[d,] \\ \overline{D} = i \frac{\partial}{\partial \theta} + i \overline{\theta} [d,], & Q^2 = \overline{Q}^2 = 0 \end{cases}$$

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation
- 3. Q-exact form

$$S = Q\overline{Q} \operatorname{tr} \left[-\frac{1}{2} \overline{\psi} \psi - \frac{\lambda}{3} \phi^{3} \right]$$

$$= \sup_{supercharges}$$

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation
- 3. Q-exact form
- 4. two Nicolai mappings ⇔ two supercharges

$$\xi^{(1)} = -[d, \phi] + \lambda \phi^{2}$$

$$\xi^{(2)} = +[d, \phi] + \lambda \phi^{2}$$

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation
- 3. Q-exact form
- 4. two Nicolai mappings
- 5. fermion doubling
 We can add a supersymmetric Wilson term.

$$S = \operatorname{tr}\left[-\frac{1}{2}([d,\phi])^2 - \frac{i}{2}(\overline{\psi}[d,\psi] - [d,\overline{\psi}]\psi) + \frac{\lambda^2}{2}\phi^4 + \lambda\overline{\psi}\phi\psi + \lambda\overline{\psi}\psi\phi\right]$$

- 1. the full exact SUSY invariance
- 2. superfield formulation
- 3. Q-exact form
- 4. two Nicolai mappings
- 5. fermion doubling
- 6. non-commutative nature $\phi \psi \neq \psi \phi$

d=2 N=2 WZ model on the lattice

$$S = \text{tr}\left[-[d_{i},\phi^{\dagger}][d_{i},\phi] - i\overline{\chi}_{+}\gamma_{i}[d_{i},\chi_{+}] - i\overline{\chi}_{-}\gamma_{i}[d_{i},\chi_{-}]\right]$$

$$+\lambda^{2}\phi^{\dagger 2}\phi^{2} + \lambda\overline{\chi}_{-}\phi\chi_{+} + \lambda\overline{\chi}_{-}\chi_{+}\phi$$

$$+\lambda\overline{\chi}_{+}\phi^{\dagger}\chi_{-} + \lambda\overline{\chi}_{+}\chi_{-}\phi^{\dagger}\right]$$

Properties

- 1. the full exact SUSY invariance
- 2. four Nicolai mappings
- 3. fermion doubling
- 4. non-commutative nature
- 5. The spinor index was introduced as the direct product.

 spinor index

<u>ij2</u> <u>X i1i2;j1j2</u> bi-matrix

We have a lot of things to do - - -

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- Can spinor/vector indices be embedded in matrices?
- Numerical simulation?
- **▶** other solutions?
- Do we really need the holomorphy?
- ► Any connection to non-commutative geometry?

We have a lot of things to do - - -

- ► How to manage infinite flavors?
 - flavor-reduction?

Keep only finite flavors and discard the others by hand!

⇒ Our models reduce to lattice models of finite flavors with (partial) SUSY breaking!

We have a lot of things to do • • •

- ► How to manage infinite flavors?
 - flavor-reduction?

Keep only finite flavors and discard the others by hand!

- ⇒ Our models reduce to lattice models of finite flavors with (partial) SUSY breaking!
- extra dimensions?

infinite flavors ←→ KK modes?

Can we add "KK mass" terms in order for finite flavors to survive at low energies???

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?

 non-commutative gauge theory??

 $A\mu A\nu \neq A\nu A\mu$

We have a lot of things to do - - -

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- ► Can spinor/vector indices be embedded in matrices?

We have here introduced the spinor indices as the direct product but they can probably be embedded in matrices???

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- ► Can spinor/vector indices be embedded in matrices?
- Numerical simulation?

Our models can be defined for a finite lattice size (finite matrix).

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- ► Can spinor/vector indices be embedded in matrices?
- ▶ Numerical simulation?
- **▶** other solutions?

We have not succeeded to find other solutions to satisfy the Leibniz rule.

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- ► Can spinor/vector indices be embedded in matrices?
- ▶ Numerical simulation?
- **▶** other solutions?
- Do we really need the holomorphy?

Is the analyticity of real functions enough to prove the No-Go theorem???

We have a lot of things to do • • •

- ► How to manage infinite flavors?
- ► How to introduce gauge fields?
- ► Can spinor/vector indices be embedded in matrices?
- ▶ Numerical simulation?
- **▶** other solutions?
- Do we really need the holomorphy?
- ► Any connection to non-commutative geometry?

$$\phi\psi \neq \psi\phi$$