Geometric effects in lattice QCD thermodynamics

Marco Panero

Institute for Theoretical Physics University of Regensburg

Lattice 2008 Williamsburg, VA, USA, 14 July 2008

- IR effects in the QCD EoS?
- 3 Simulation details

- IR effects in the QCD EoS?
- 3 Simulation details

5 Conclusions and outlook

- Experiments at temperatures up to a few times *T_c* show a strongly interacting system [Arsene *et al.*, 2004], [Back *et al.*, 2004], [Adcox *et al.*, 2004], [Adams *et al.*, 2005]
- Perturbative approach to the QCD plasma not adequate, and affected by typical difficulties of thermal QFT [Linde, 1980]—see also [Lichtenegger and Zwanziger, 2008]
- Lattice calculations of the gluon EoS show strong deviations from the Stefan-Boltzmann limit, with a large deficit in the entropy and pressure [Boyd et al., 1996]
- Observables related to thermodynamic fluctuations [Gavai, Gupta and Mukherjee, 2004] are close to AdS/CFT predictions [Gubser, Klebanov and Tseytlin, 1998]
- Similar features also observed in SU(N > 3) models [Bringoltz and Teper, 2005]—see also [Datta and Gupta, 2008]

A B > A B > A B >

Outline

- IR effects in the QCD EoS?
- 3 Simulation details

5 Conclusions and outlook

UV and IR effects on the QCD equation of state — The conventional scenario

UV effects on the lattice QCD equation of state are well understood **[Engels, Karsch and Scheideler, 1990]**:

- The distortion of the continuum dispersion relation induced by the lattice cutoff modifies the normalization of thermodynamic observables
- Effect mitigated by using improved lattice actions
- Overall change in the normalization can be accounted for via a factor that can be evaluated via numerical integration

UV and IR effects on the QCD equation of state — The conventional scenario

IR effects are not expected to play any non-trivial rôle:

- Due to the existence of a chromomagnetic screening length $O(\frac{1}{g^2T})$, the low-energy plasma dynamics is effectively similar to that of the low-temperature hadronic phase [DeTar, 1985], [Blaizot and lancu, 2001]
- As a consequence, for temperatures of the same order of magnitude as T_c, IR effects are expected to be exponentially suppressed
- Empirically, N_s/N_t ≈ 4 (or larger) is sufficient to yield complete suppression [Engels, Fingberg, Karsch, Miller and Weber, 1990], [B. Beinlich, F. Karsch and E. Laermann, 1995]

Are non-trivial IR effects possible?

It was suggested **[Gliozzi, 2007]** that non-trivial IR effects may still have an impact on the lattice QCD EoS:

- In a finite volume, the Stefan-Boltzmann law for a gas of free gluons (*i.e.* at infinite temperature) gets logarithmic corrections, which depend on the *LT* aspect ratio
- The logarithm of the partition function is no longer purely extensive:

$$\frac{\log Z}{N^2 - 1} = \frac{\pi^2}{45} (LT)^3 - \log \sqrt{LT} + O\left(e^{-2\pi LT}\right)$$
(1)

• All thermodynamic observables get corrections; in particular: $p \neq -f$

Introduction

Are non-trivial IR effects possible?

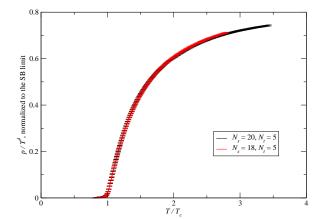
- This effect is due to the existence of periodic boundary conditions: The zero-mode contribution to the functional integral is divergent, and must be regularized
- In principle, the same mechanism may also be at work in the strongly-interacting, $T/T_c = O(1)$ regime—although the effective d.o.f. are completely different
- The effect can only be calculated exactly for the free case, using ζ-function techniques (see, *e.g.*, [Edery, 2005])
- For the interacting case, the free-limit corrections can be considered as an upper bound
- Quantitatively, for typical parameters of finite-temperature lattice simulations—[Aoki et al., 2005], [Bernard et al., 2006], [Cheng et al., 2007]—, this value could account for up to about half of the pressure and entropy deficit
- Might be particularly relevant for SU(N) simulations, where the deconfinement transition can be studied using smaller lattices than for SU(3) [Lucini, Teper and Wenger, 2004]

Introduction	IR effects in the QCD EoS?	Simulation details	Results	Conclusions and outlook
Outline				

2 IR effects in the QCD EoS?

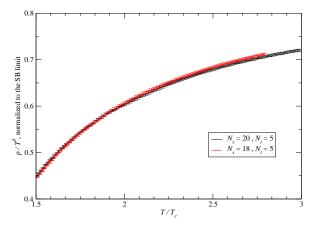
- SU(*N*) YM simulations on the lattice, combining heat-bath [Kennedy and Pendleton, 1985] for SU(2) subgroups [Cabibbo and Marinari, 1982] and full-SU(*N*) overrelaxation [Kiskis, Narayanan and Neuberger, 2003], [de Forcrand and Jahn, 2005]
- Some T = 0 simulations run using Chroma [Edwards and Joó, 2004]
- Scale set by measuring and interpolating the string tension—see also [Lucini, Teper and Wenger, 2004]
- Equation of state determined by the integral method [Engels et al., 1990]
- Normalization due to UV cutoff effects corrected by the N_t-dependent normalization factor [Engels et al., 2000]

Outline



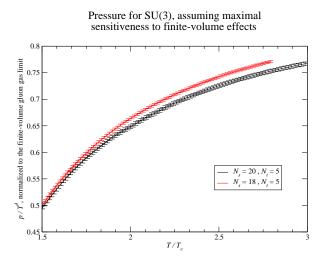
Looking for logarithmic effects in the SU(3) EoS

To the level of precision obtained, the data do not reveal IR effects, up to about $3T_c$



< ロ > < 同 > < 回 > < 回 >

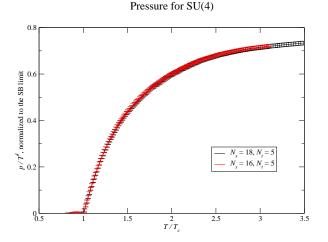
Looking for logarithmic effects in the SU(3) EoS


Deviations compatible with statistical fluctuations

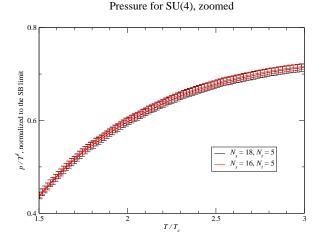
Pressure for SU(3), zoomed

Looking for logarithmic effects in the SU(3) EoS

Assuming maximal sensitiveness to IR effects, the data sets tend to deviate from each other

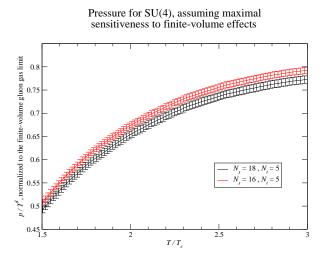


Introduction

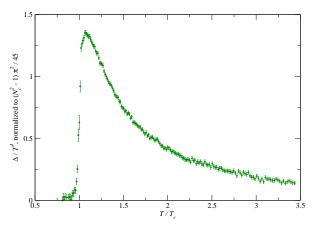

Looking for logarithmic effects in the EoS for SU(N)

Similar conclusions are found from the analysis of SU(4) data

Looking for logarithmic effects in the EoS for SU(N)

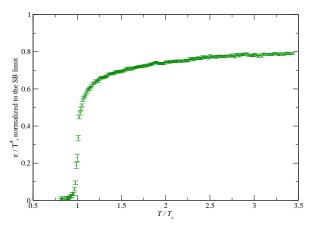

Similar conclusions are found from the analysis of SU(4) data

Looking for logarithmic effects in the EoS for SU(N)


Similar conclusions are found from the analysis of SU(4) data

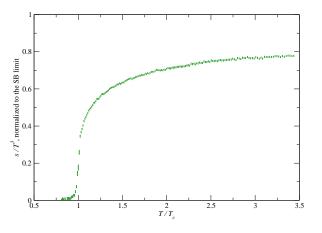
Other thermodynamic observables in SU(3)

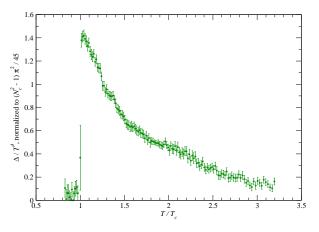
Trace of the energy-momentum tensor for SU(3)



(日)

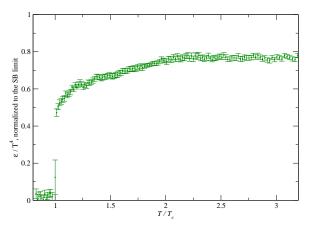
Other thermodynamic observables in SU(3)

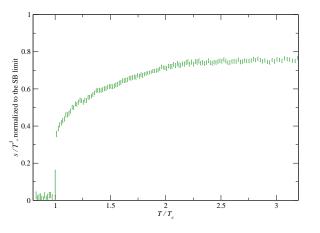

Energy density for SU(3)


Other thermodynamic observables in SU(3)

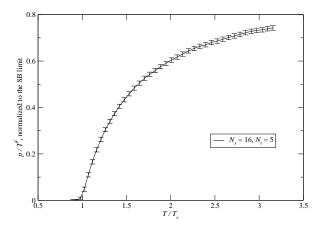
Entropy density for SU(3)

Other thermodynamic observables in SU(4)

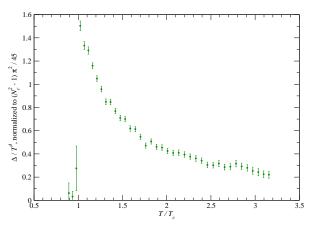

Trace of the energy-momentum tensor for SU(4)

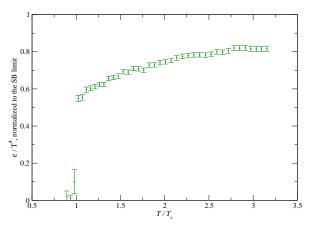

Other thermodynamic observables in SU(4)

Energy density for SU(4)

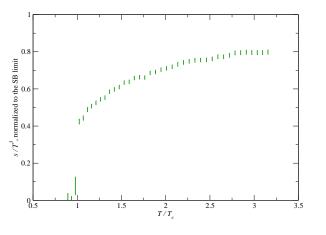


Other thermodynamic observables in SU(4)

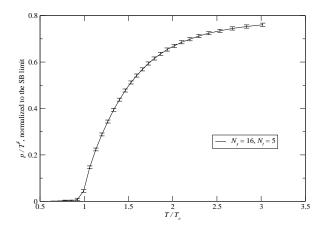

Pressure for SU(5)


(日)

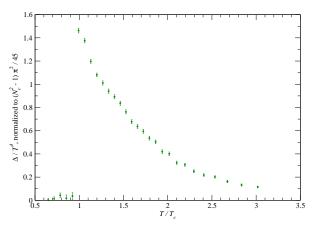
Trace of the energy-momentum tensor for SU(5)



Energy density for SU(5)

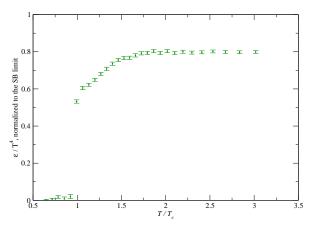


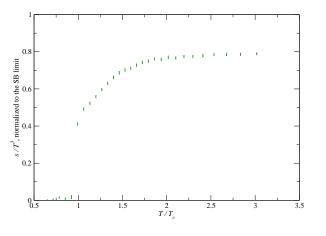
Entropy density for SU(5)



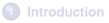
Pressure for SU(6)

(日)


Trace of the energy-momentum tensor for SU(6)



▲□▶▲圖▶▲厘▶▲厘


Energy density for SU(6)

Entropy density for SU(6)

- IR effects in the QCD EoS?
- 3 Simulation details

Conclusions and outlook

- To the level of precision reached, no evidence of logarithmic IR effects at temperatures up to about $3T_c$. However, they may possibly be found at very high temperatures—where lattice investigations are now possible [Endrődi, Fodor, Katz and Szabó, 2007]
- Same conclusions seem to hold for SU(4) (albeit the data precision is lower)
- In progress: complete study of thermodynamic observables for SU(3) and SU(N) lattice gauge theories

