Quark Propagators at the confinement and deconfinement phases

Masatoshi Hamada^A, Hiroaki Kouno^B, Atsushi Nakamura^C, Takuya Saito^Dand Masanobu Yahiro^A

> Kyushu University, Saga University, Hiroshima University, Kochi University

Main Results

- Quark propagators have negative norm contributions at confinement phase.
- This feature remains at deconfinement phase.

Introduction

Quark propagator

- → Quark confinement
- → Chiral symmetry breaking

Quark propagators relate to two phase transitions in QCD.

Quark confinement

Pole mass, Asymptotic state

Chiral symmetry breaking

Order parameter: $\langle \psi(0)\psi(x)\rangle_{x\to 0}$

At finite temperature	
low	high
Quark : confined	Quark : deconfined
Chiral symmetry : breaking	Chiral symmetry : restored
How do behaviors of qua	ark propagators change?
Do quark propagators ha and one or some i	ve no pole at confinement pha pole(s) at deconfinement?

$$Formulation2$$
Time-time correlation function(One pole case)
$$G(t) = \frac{Z_1}{2V \cosh(m\beta/2)} [\cosh(m(t-\beta/2))\gamma_4 - \sinh(m(t-\beta/2))]$$
Effective mass
$$\frac{G_4(t)}{G_4(t+1)} = \frac{\cosh(m(t-\beta/2))}{\cosh(m(t+1-\beta/2))}$$

$$\frac{G_s(t)}{G_s(t+1)} = \frac{\sinh(m(t-\beta/2))}{\sinh(m(t+1-\beta/2))}$$

Numerical Conditions

- Quenched approximation
- Plaq. gauge action + Wilson fermions with Clover
- Gauge Fixing : Landau Gauge
- Thermalization : 1000
- Sweeps between measurements : 1000
- ***** # of Configuration : 20 50
- beta = 6.10, kappa = 0.1345559, 0.1353591
- ***** beta = 6.25, kappa = 0.1346226, 0.1352633
- Confinement phase : Nt = 16, Ns = 24, 32

Deconfinement phase : Nt = 8, Ns = 24, 32

Numerical Result 1

Time-time correlation function at confinement phase

Numerical Result 2

Time-time correlation function at deconfinement phase

namely *violation of positivity*. If a certain degree of freedom has negative norm contributions in its propagator, it cannot describe a physical asymptotic state, *i.e.* there is no Källén– Lehmann spectral representation for its propagator.

R. Alkofer, W. Detmold, C. S. Fischer, P. Maris, Phys.Rev. D70 (2004) 014014.

Summary

- * Effective mass shows that quark propagators include negative norm state.
- This feature remains at deconfinement phase.
- * We can not fit the scalar part of time-time correlation functions.
- * These behavior do not depend quark mass or spatial volume.
- * Effective mass at confinement phase twice larger than it at deconfinement phase.